Shadow Coefficient for TRNSYS with the HVACTool

Import 3d objects like SketchUp and create the shadow coefficient with HVACTool as boundary condition for TRNSYS.

New Project

Import your geometry

Delete the blockMesh

(4) Change the date to 01.01.2013 and(5) Simulation run time to 8760h

Select the windows

Turn on the sun diagram

Setup location for longitude and latitude.

Turn on the shadow mode (right mouse button menu)

Go to the Sun Path PlugIn -> Calculate

Press the "SunFace" button

(12) Select all windows (yellow turn to red) and(13) use an edge length of 0,2m. (14) After that press "Save"

We create our sun mesh. We can close the window.

Start the Action Script

Build our Action Script. Choose "Simulation"

Choose "Sun Calculation"

Choose "Printer"

Connect it together

Click on "File" and choose a storage place like "Shadow.out".

Press "start" and drink some coffee.

During the HVACTool is working you can turn on the legend an have a look to the colorful sun mesh.

Start a new project in TRNSYS and use Type 9d Select the external shadow file

Adjust your import like (F4.0,1X,F2.0,1X,F2.0,1X,F2.0,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3)

Skip header to "1" and connect a online plotter with Output 5. Number of values to read: 13

Now you can do what ever you want to do

