<div dir="ltr"><span style="font-family:arial,sans-serif;font-size:13px">Hi again, </span><div style="font-family:arial,sans-serif;font-size:13px"><br></div><div style="font-family:arial,sans-serif;font-size:13px">Seville is on 37.38 N, 5.98 W. Considering the equation 1.5.2 from "Solar Engineering of Thermal Processes" (by Duffie and Beckman) we will have:</div>
<div style="font-family:arial,sans-serif;font-size:13px">1- Seville has 1 hour difference with GMT---> so: L_st = 15 * 1 = 15 degrees West</div><div style="font-family:arial,sans-serif;font-size:13px">(on 21st of Dec we have n=355, so B= (n-1)360/365---> B = 349.17, therefore E = 2.17 min (equation 1.5.3)) </div>
<div style="font-family:arial,sans-serif;font-size:13px">Solar Time-Standard Time = 4 (L_st-L_loc) + E = 4 (15- 5.98) + 2.17 = 38.25 minutes </div><div style="font-family:arial,sans-serif;font-size:13px"><br></div><div style="font-family:arial,sans-serif;font-size:13px">
Hence on 21st of Dec at Solar Time = 12:00 we will have the local standard time equal to : 11:22 </div><div style="font-family:arial,sans-serif;font-size:13px"><br></div><div style="font-family:arial,sans-serif;font-size:13px">
at this time: solar zenith angle should be minimum. But surprisingly, this is not we see in the curves. that is why it is confusing for me. In the Graph the minimum Zenith angle happens at 8509: means 14:00- How can you interpret this discrepancy? </div>
</div>