<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
{mso-style-priority:1;
margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
span.EmailStyle19
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:#1F497D;}
span.EmailStyle20
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Good morning Matthew,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">There are a few considerations when modelling pools in eQUEST.
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Pool water heating -<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">This piece might be the most straightforward. The pool water heating requirements will be modelled as a peak flow and schedule as a direct load on either a hot
water loop or a DHW Loop where it will be part of the building DHW energy as an end use. The peak flow and schedule here will be determined as the greater of the pool water evapouration or the make-up water if there is greater make up flow due to water per
swimmer requirements. If the pool water heating is added as a direct load to a hot water loop, it will show in the “equipment” end use. Generally, where building boilers are used to provide pool heating along with space heating, my practice is to create
a secondary pool hot water loop to the main hot water loop as it makes isolating and reviewing the pool heating easier in the PS-D and PS-H reports of the .sim. A dedicated primary hot water loop for pool is appropriate when the pool heating equipment is
dedicated and/or when heat is recovered from the pool air handling equipment.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Conditioning the pool air space -<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">In order to model the dehumidification of the pool zone, you will need to impose the latent load caused by pool evapouration. There are a few sources for the
calculation of evapouration from pools. I recommend "Methods for Calculation of Evaporation from Swimming Pools and Other Water Surfaces," ASHRAE Transactions, vol. 120, part 2, 2014 which is available from the author’s website here:
<a href="https://mmshah.org/publications.html">https://mmshah.org/publications.html</a> (item 23). However you determine the evapouration rate, you will impose it on the space as an “Internal Energy Source” on the “Equipment” Tab of the pool space. The “Input
power” will be the peak evapouration with a sensible HG ratio of 0 and a latent HG ratio of 1. I have been using the latent heat of evapouration of 1,046 BTU/lbm of water evapourated for an 84°F pool. Depending on your pool surface area and temperature,
activity factor and the natatorium air conditions, I expect your peak evapouration to be in the range of 150,000 to 500,000 BTU/hr. A schedule is required for the occupied and unoccupied evapouration taking the pool activity factor into consideration. Given
that the energy for heating of the water evapourated is covered in the pool water heating above – I recommend setting the Source Type for the evapouration to Process – that way it is not “double counted” on the utility bill.
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><img border="0" width="528" height="316" style="width:5.5in;height:3.2916in" id="Picture_x0020_1" src="cid:image002.png@01D676F7.7BA66370"></span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Dehumidification is achieved by setting the maximum humidity keyword in the air handling system serving the pool area. Note that the space temperature of the
pool air volume is often kept higher than the rest of the building and will need to be set appropriately. The ventilation rates will be set for dehumification requirements. Heat recovery from the dehumiditication system is common with condenser energy often
being used to preheat outdoor air as well as heating the pool water. Personally, I have not had good success using the DX waste heat keywords to transfer condenser heat to a DHW loop. My practice has been to use a heat recovery chiller to do the heat recovery
to a hot water loop. Note that the heat recovery chiller keywords are not recovering heat to the hot water loop in DOE-2.3 so I recommend DOE-2.2 for pool modelling (at least if you have heat recovery to the pool water heating). A heat recovery chiller can
recover to either a HW or a DHW loop. If you use a DHW loop, you will have to reduce the loop delta-T to below 70F or eQUEST will throw an error.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Cheers,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Brian<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<div>
<p class="MsoNormal" style="margin-bottom:8.0pt;line-height:106%"><b><span style="line-height:106%;font-family:"Arial",sans-serif;color:#006298">Footprint<br>
<br>
</span></b><b><span style="font-size:10.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#006298">Brian Fountain<br>
</span></b><span style="font-size:9.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#3D3935">Associate<br>
</span><b><span style="font-size:9.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#006892">d
</span></b><span style="font-size:9.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#3D3935">416 572 8501</span><span style="font-size:9.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#006892"> m
</span><span style="font-size:9.0pt;line-height:106%;font-family:"Arial",sans-serif;color:#3D3935">416 562 6831<o:p></o:p></span></p>
</div>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0cm 0cm 0cm">
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> Equest-users <equest-users-bounces@lists.onebuilding.org>
<b>On Behalf Of </b>Matthew Yarmon via Equest-users<br>
<b>Sent:</b> August 20, 2020 10:39 AM<br>
<b>To:</b> equest-users@lists.onebuilding.org<br>
<b>Subject:</b> [Equest-users] modeling an indoor pool in eQuest<o:p></o:p></span></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">CAUTION: EXTERNAL SENDER <o:p></o:p></p>
<div>
<div>
<p class="MsoNormal">Hello,<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">I am looking for general guidelines on how to model an indoor pool in eQuest, including energy requirements to heat the pool water, and energy requirements to heat/cool/dehumidify the air. If anyone has any resources to point me towards,
that would be greatly appreciated. The pool in question is located in northern Alberta, where the temperature dips to as low as -22 °F in winter. The pool has two small windows. Its roof is part of the building envelope, but its walls are not - the walls
are adiabatic.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Thanks,<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">Matthew<o:p></o:p></p>
</div>
</div>
</div>
</body>
</html>