

DOE 2.2 - Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

Building Energy Simulation Forum (BESF) April 20, 2011 Portland, OR

Reid Hart, PE Associate Director, Technical Research Group

Announcing: Final draft available

Includes prototype **Demand Controlled** Ventilation (DCV) **Measure Analysis Guide**

Research Funded by:

Bonneville Power Administration

Final Draft available at: http://energytrust.org/Business/building-energy-simulation/

Final soon available at: www.peci.org & www.bpa.gov/energy/n/commercial.cfm

covers:

DCV Modeling of

Retail

Movie Theaters

Meeting/Lecture

Classrooms

Gym/Fitness

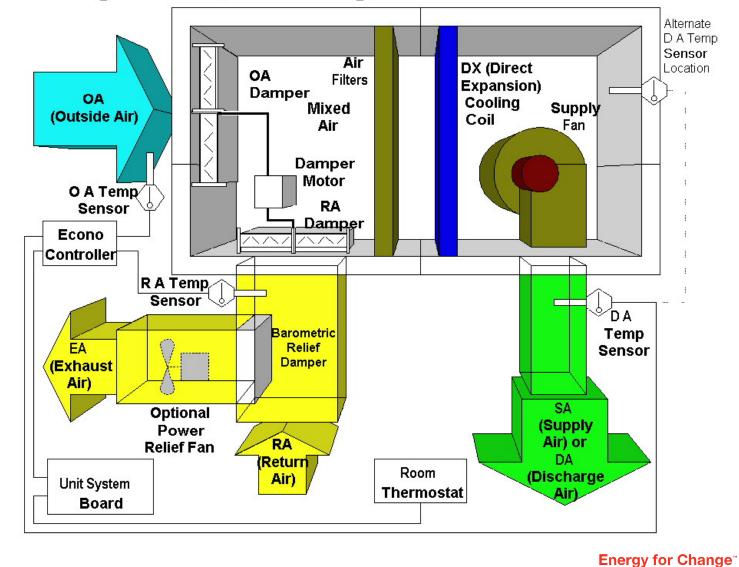
eQUEST models

DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

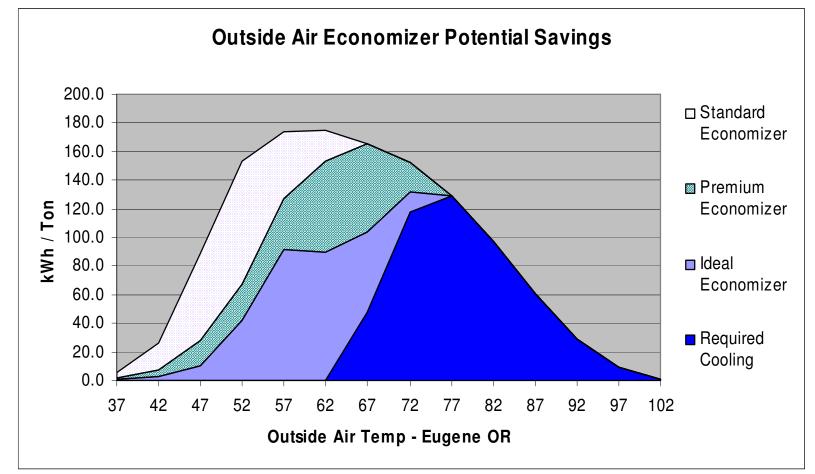
Learning Objectives:

- Understand correct modeling of outside air economizers for single-stage dX cooling
- Distinguish commercial ventilation requirements and modeling: *What to do if you aren't in California!*
- Understand DOE 2 limits and proper modeling of unoccupied fan operation
- List issues for proper VFD fan modeling
- Know how to model DCV

Understand Correct Modeling of Outside Air Economizers for Single-Stage dX RTUs


DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

Basic OSA Economizer Idea


Packaged Unit (DX cooling) Outside Air Economizer

6

Savings from Economizer Levels

Ideal economizer does not happen in RTUs.

Get most of savings with alternating integration.

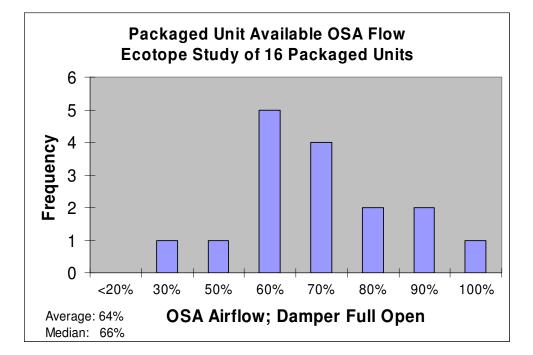
Energy for Change^{**}

Integrated Economizer for RTUs

- Thermostat with dedicated stage for economizer.
 - Single stage at thermostat requires "either/or" operation with low (55 F) changeover setting. Result: very little savings.
 - Dedicated first stage on thermostat allows economizer to operate before compressor.

- For dX cooling with minimal stages; must locate primary control sensor in <u>discharge air</u>, not mixed air position.
 - Mixed air sensors notoriously inaccurate (poor mixing)
 - Otherwise DA too cold, economizer will be disabled

Three specific economizer modeling issues:


- Maximum outside air is usually less than the 100% default included in eQUEST
- The minimum outside air position is often greater than required
- Single zone packaged units with single-stage dX cooling coils operate in alternating integration while DOE 2.2 PSZ system incorrectly models full integration

Max OA Fraction

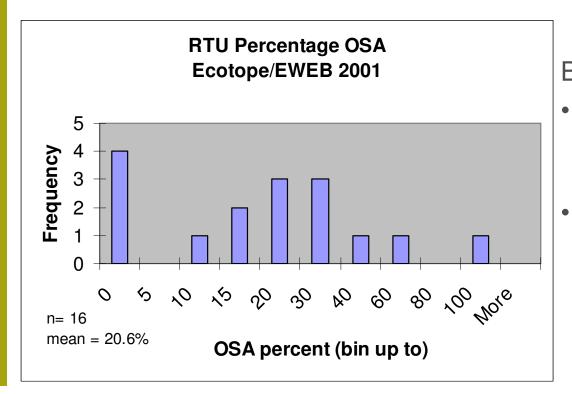
• Code may call for 100%; do you get it?

• 70% is more reasonable for RTUs without exhaust fans

Suggested Max_OA_Fraction

OA fraction improved with:

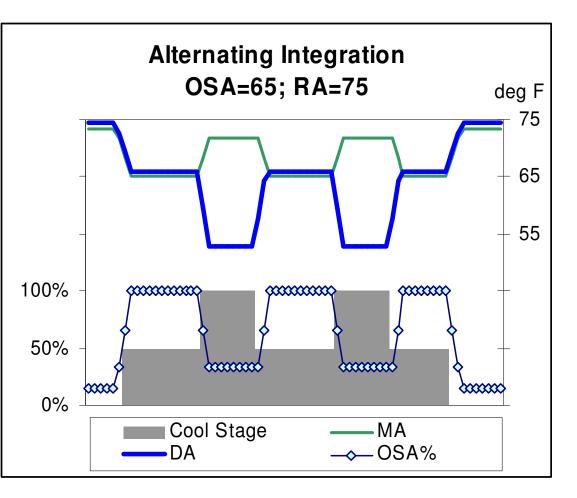
- Barometric relief damper
- Motorized exhaust damper
- Seals and good closure on return damper
- Powered exhaust fan
- Return fan with return damper seals


Configuration	MAX_OA_FRACTION
No relief damper	0.50
Barometric relief damper (most common)	0.55 to 0.75 (0.70 suggested)
Motorized relief/exhaust damper	0.60 to 0.80 (0.75 suggested)
Good seals on return damper	0.75 to 0.85 (0.80 suggested)
Powered exhaust fan activated at 50% OSA	0.80 to 0.90 (0.85 suggested)
Return Fan with good seals on return damper	0.80 to 0.90 (0.85 suggested)

Minimum Ventilation Rate

- MIN-OUTSIDE-AIR at system level
- ZONE keywords take precedence OUTSIDE-AIR-FLOW, OA-CHANGES, OA-FLOW/PER or EXHAUST-FLOW
- Office typically 7% to 13% required; Actual ~20%

Baseline?


- Use 20%? May be appropriate for low density buildings
- Prototypes use ASHRAE 90.1 area + 50% default people base case; matching most codes

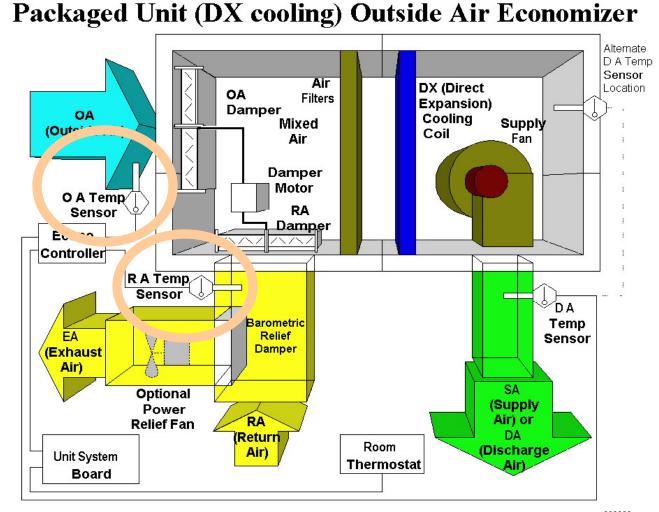
Energy for Change[®]

Alternating Integration Fix

- Rtus (PSZ) with staged dX do NOT have full integration
- DOE 2 says they do
- Economizer must throttle back when dX is on . . . Why?
- Need to model all modes during each hour
 - Economizer only
 - Econo + Stage 1 dX
 - Econo + Stage 2 dX
 - Min OA + Stage 1 dX
 - Min OA + Stage 2 dX

OSA High Limit or "changeover" sequence

When is it too hot to use economizer?

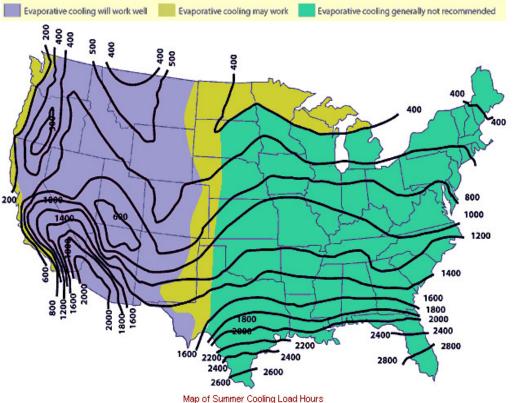

- Mode of Control
 - Single (OSA only) fixed (snap disc)
 - Single (OSA only) adjustable (analog)
 - Differential or Comparative (OSA vs. RA)
- Type of Sensor
 - Dry-bulb measures temperature only
 - Enthalpy adjusts for humidity
 - Separate dry-bulb and humidity sensors

Dry-Bulb Differential Changeover

- Dry-bulb analog OA & RA sensors
- Differential changeover logic
 - Both OA & RA sensors
 pprovided
 - NO snap discs
- Single changeover OK with aggressive setpoint

Energy for Change^{**}

Differential Changeover


- Differential or Comparative Changeover
 - RA & OSA sensor
 - Avoids confusion; no guesswork
 - Adapts to loads; avoids callbacks
- How it works
 - Compares temperature or energy content (enthalpy) of both RA & OSA
 - Allows economizer if OSA is cooler or has less enthalpy or heat energy depending on sensor
 - Maximize integration or time both the economizer can function with cooling

Dry-bulb Changeover in the West

- ARI map shows where evaporative cooling works.
- Economizer climates in West (ASHRAE 90.1):
 - 95% dry
 - 5% intermediate
 - 0% humid
- Changeover Sensor:
 - West: dry-bulb
 - East: enthalpy

Map of Summer Cooling Load Hours Reprinted from pages 16 and 17 of the ARI Unitary Directory, August 1, 1992 - January 31, 1993 Courtesy of the Air-Conditioning and Refrigeration Institute, ARI.

Ресг

See Iowa Humidity Sensor Testing: NBCIP *PTR: Duct Mounted Relative Humidity Transmitters.* April 2004; Rev. November 2004 www.energy.iastate.edu/Efficiency/Commercial/download_nbcip/PTR_Humidity_Rev.pdf Energy for Change

Modeling dX Cooling Economizer in eQUEST

- DOE 2.2 will overstate economizer energy savings for Packaged Single Zone (PSZ) and PVVT systems using single stage DX cooling coils.
- DOE 2.2 models a fully integrated economizer strategy instead of actual alternating integration.
- In actuality, a single-stage dX cooling unit must throttle back the outside air during integrated operation.
- In order to simulate an alternating economizer strategy in DOE 2.2 a work around has been developed.
 - Adjust the high limit to reduce economizer savings
 - Described in Appendix A of DCV modeling guide

High Limit Adjustment – Low Density Occupancies

Adjusting DOE 2.2 PSZ from full integration to alternating integration

OAT	Adjusted High Limit Input, °F			Reduction in High Limit, °F		
Balance:	57	52	47	57	52	47
OAT High Limit	Light	Med	Heavy	Light	Med	Heavy
75.0	71.3	69.6	68.6	3.7	5.4	6.4
72.5	70.2	69.2	68.2	2.3	3.3	4.3
70.0	69.1	68.2	67.2	0.9	1.8	2.8
67.5	66.5	65.7	64.8	1.0	1.8	2.7
65.0	64.5	64.2	63.7	0.5	0.8	1.3
62.5	62.1	61.7	61.2	0.4	0.8	1.3
60.0	59.8	59.6	59.3	0.2	0.4	0.7
57.5	57.5	57.1	56.7	0.0	0.4	0.8
55.0	55.0	54.8	54.5	0.0	0.2	0.5

Low Density Occupancies such as offices

Internal loads are characterized as light, medium and heavy.

Heavy: Lighting at 2.3 Watts/square foot with high occupancy; Call center

Medium: Lighting at 1.7 Watts/square foot; moderate occupancy; open office

Light: Lighting at 0.7 Watts/square foot with low density occupancy

High Limit Adjustment – High Density Occupancies

Adjusting DOE 2.2 PSZ from full integration to alternating integration

OAT	Adjusted High Limit Input			Reduction in High Limit			
Balance:	52	47	37	52	47	37	
Hi Limit	Light	Med	Heavy	Light	Med	Heavy	
75.0	70.7	69.5	67.8	4.3	5.5	7.2	
72.5	69.8	69.1	67.9	2.7	3.4	4.6	
70.0	69.1	68.4	66.4	0.9	1.6	3.6	
67.5	66.7	66.2	64.7	0.8	1.3	2.8	
65.0	64.6	64.4	63.6	0.4	0.6	1.4	
62.5	62.0	61.7	60.8	0.5	0.8	1.7	
60.0	59.7	59.5	58.9	0.3	0.5	1.1	
57.5	57.3	57.1	56.4	0.2	0.4	1.1	
55.0	54.9	54.7	54.1	0.1	0.3	0.9	

High Density Occupancies (with increased ventilation)

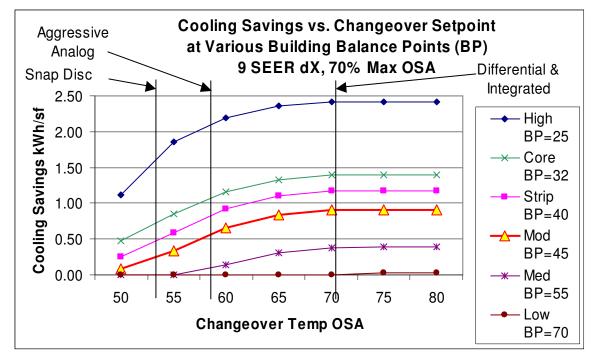
Internal loads are characterized as light, medium and heavy.

Heavy: Retail with high lighting or appliance and people density

Medium: Moderately full classrooms, meeting rooms, and lecture halls

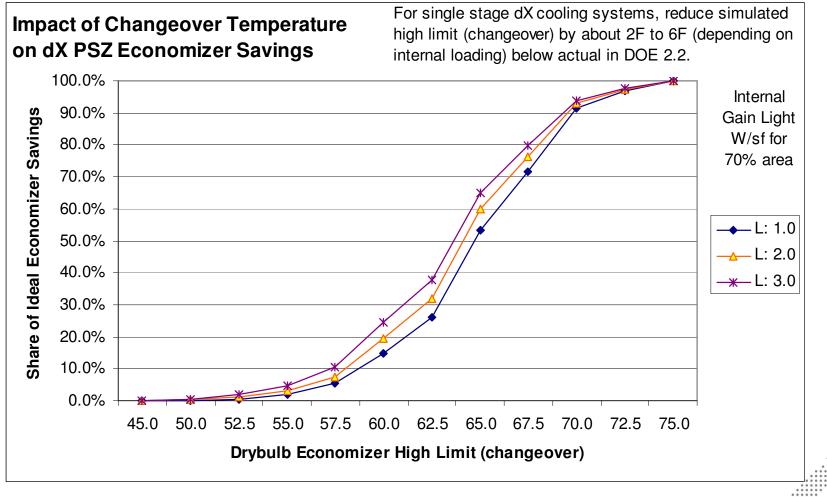
Light: Theatre or assembly with intermittent occupancy, low light levels

Development of Economizer High Limit Adjustment Values

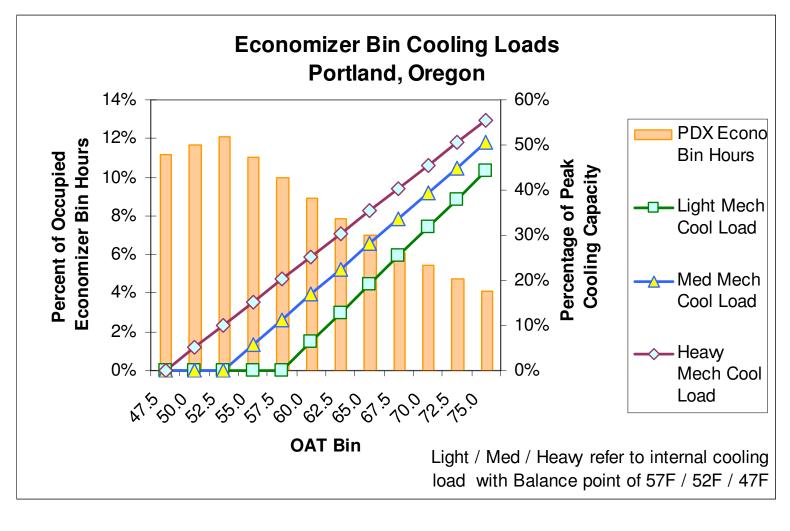

- Use a simplified bin method to find:
 - Bin cooling loads and occupied hours
 - OSA % for 53 °F DAT with mechanical cooling
 - Time of economizer only operation in each bin
- Percentage of full integrated economizer delivered by alternating integration
- Match those percentage reductions in savings to parametric DOE2 runs.

Integration Increases Savings

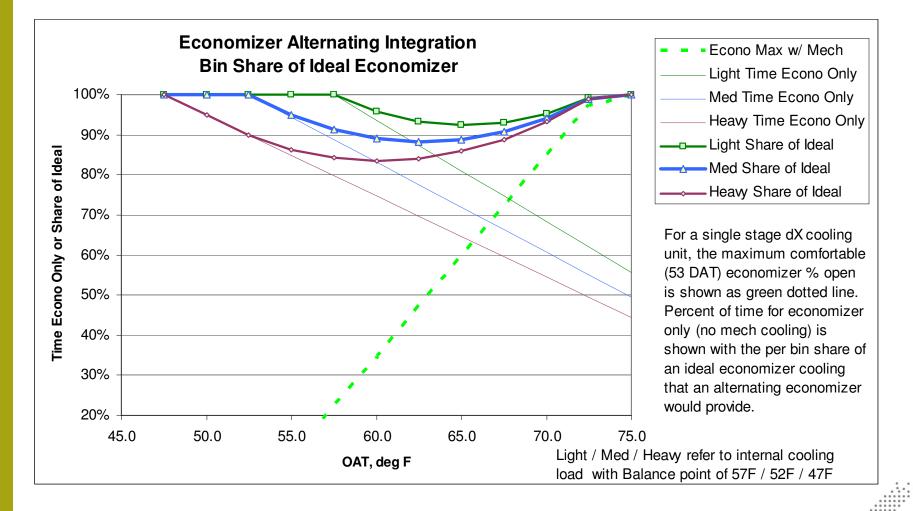
- Cooling load:
 +Internal gains
 - + Solar
 - Heat loss
 - Ventilation
- Balance Point: cooling not needed
- Internal gains are reducing
 - Efficient lights
 - LCD monitors



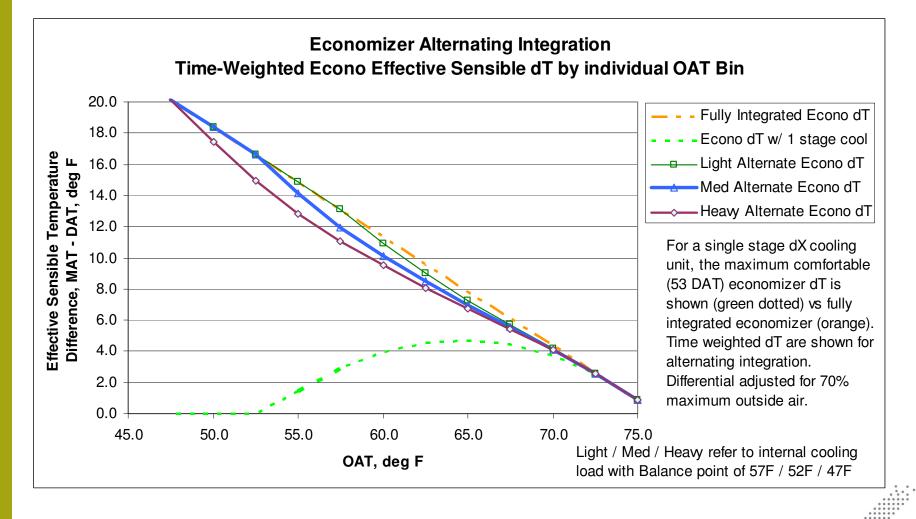
- Save more with higher OSA changeover
 - High changeover requires integration
 - Little savings at snap disc changeover points


Impact of Changeover Temperature on % dX PSZ Economizer Savings

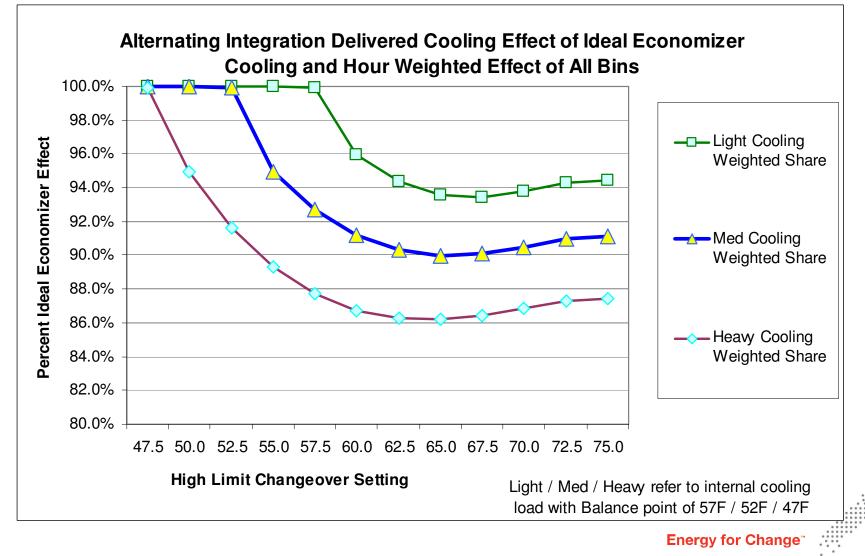
Energy for Change^{**}



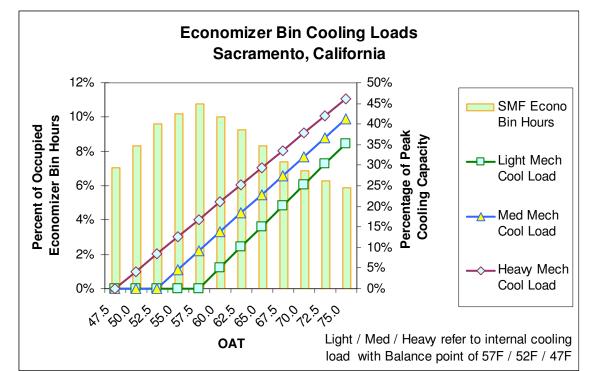
Portland Cooling Loads in Economizer Range



Economizer Time and Share of Ideal by OAT Bin



Economizer Time–Weighted Effective dT by OAT Bin


Economizer Delivered Cooling Sensible Effect by OAT Bin

Sacramento Cooling Loads in Economizer Range

- Climate does NOT matter for adjusted high limit inputs
- eQUEST provides climate adjustment
- Portland and Sacramento Adjustments all within 0.75°F

High Limit Adjustment – Low Density Occupancies

Adjusting DOE 2.2 PSZ from full integration to alternating integration

OAT	Adjusted High Limit Input, °F			Reduction in High Limit, °F		
Balance:	57	52	47	57	52	47
OAT High Limit	Light	Med	Heavy	Light	Med	Heavy
75.0	71.3	69.6	68.6	3.7	5.4	6.4
72.5	70.2	69.2	68.2	2.3	3.3	4.3
70.0	69.1	68.2	67.2	0.9	1.8	2.8
67.5	66.5	65.7	64.8	1.0	1.8	2.7
65.0	64.5	64.2	63.7	0.5	0.8	1.3
62.5	62.1	61.7	61.2	0.4	0.8	1.3
60.0	59.8	59.6	59.3	0.2	0.4	0.7
57.5	57.5	57.1	56.7	0.0	0.4	0.8
55.0	55.0	54.8	54.5	0.0	0.2	0.5

Low Density Occupancies such as offices

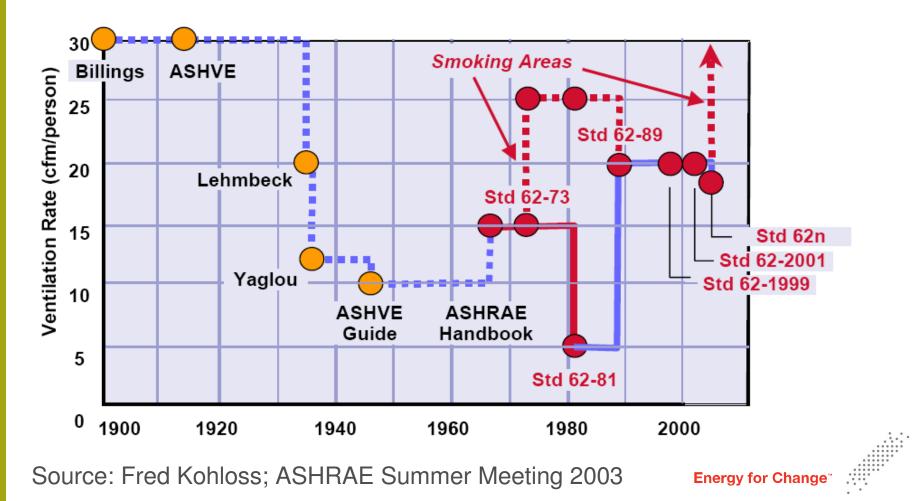
Internal loads are characterized as light, medium and heavy.

Heavy: Lighting at 2.3 Watts/square foot with high occupancy; Call center

Medium: Lighting at 1.7 Watts/square foot; moderate occupancy; open office

Light: Lighting at 0.7 Watts/square foot with low density occupancy

Distinguish Commercial Ventilation Requirements and Modeling: What to do if you aren't in California!


DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

Ventilation Rate History

For office spaces...

Health or Stinky Air?

- Primary purpose is "acceptable indoor air quality"
 - Primary unit in testing is "olf" (olfactory unit)
- Standard has a purpose to "minimize negative impacts on health"
 - Difficulty in proving objective healthy concentrations for contaminants of concern in commercial
 - Second hand smoke major restriction
 - Most commercial occupancies do not have significant health contaminant issues, with exception of dry cleaning, nail salons, light manufacturing and perhaps retail and warehousing

Standard 62.1 Procedures

- Ventilation Rate Procedure (Prescriptive Path)
 - For given occupancy, provide minimum ventilation when occupied
- IAQ Procedure
 - Provide a ventilation and air cleaning strategy that:
 - Addresses contaminants of concern
 - Is found acceptable based on survey or measurement
 - Now requires site specific investigation and monitoring
- Natural Ventilation Procedure
 - Limited to almost always require mixed mode

ASHRAE Standard 62.1 Ventilation Rate Procedure

- Determine an outside air ventilation rate and provide when occupied
- Ventilation now has 2 components
 - Area ventilation rate
 - People ventilation rate
- These 2 components are used to establish the total or "full" ventilation rate
 - Full ventilation rate = Area + People
 - There is NOT a requirement to provide the area rate to unoccupied areas!

People + Area Based Rate

- Occupancy from
 - Default tables (ASHRAE 62.1 or code); usually high
 - Observation or architectural program
 - Owner information
- Most codes set a floor for people basis to 50% of stated table default people densities
- Less important to get people accurate if using DCV
- Example; Conference Room, 1000 square feet:
 - Area: 1000 x 0.06 cfm/sf = 60 cfm
 - People: 50 x 5 cfm/per = 250 cfm
 - Total = **310 cfm** or 26% of 1200 unit or zone cfm

Ventilation Codes

- Most energy codes require DCV in high density spaces
- Most PNW mechanical codes either
 - Allow ASHRAE 62.1 as an alternate
 - Or are modeled after 62.1
- Occupancy type lists are generally shorter than ASHRAE; tied to fire occupancies
- California is different
 - Ventilation is maximum of area or people rate
 - Generally 0.15 cfm/sf area rate
 - Generally 15 cfm/person people
 - Requires pre-purge and continuous fan operation
 - DCV has general 1000 ppm setpoint
 - CO₂ sensor in space with readout required

California is Different (of course)

Standard: Requirement	ASHRAE 62.1 (since 2001n)	California Title 24 (2008/10 Compliance Manual)			
People; Area rates	Sum	Max (DOE 2.2 default)			
High density cfm per person	down to 5	stay at 15			
General area: cfm/sf	0.06	0.15			
Ventilate when	"actually occupied"	"Usually occupied"			
Intermittent fan	Short periods (~30 min)	Only 5 minutes / hour			
DCV C _R Setpoint	Match space (800-1800)	Always 1000 ppm			
DCV Sensors	CO ₂ return air OK; schedule, counters	CO ₂ only, in space, readout, trended if DDC			
Space purge	Not required (recommended if non human contaminants)	1 hour or 3 air changes before occupancy			
Multiple zone	Ventilation efficiency	Min for space; Vent at fan			

Space & Zone OA Specs ASHRAE 62.1 vs CA T24

Area Rate: INF-FLOW/AREA Unoccupied Cfm/sq ft; not wind corrected Enter unoccupied; use INF-SCHEDULE to multiply for occupied 0.0263 + 0.12 = 0.1463 $0.0263 \times 5.56 = 0.12$

People Rate: OA-FLOW/PER (Not: OA-FLOW/AREA)

 Basic Specs
 Equipment
 Infiltration
 Daylighting
 Contents
 Lighting

 Infiltration Method:
 Air Change
 Image: Contents
 Schedule:
 ZG0-S1 (PSZ) P-Inf Sch
 Image: Contents


 Air Change Method
 Image: Contents
 Crack Method
 Image: Contents
 Crack Method

 Air Changes/Hour:
 0.00
 Neutral Zone Height:
 n/a ft

 Infiltration Flow:
 0.0263
 cfm/ft2
 ASHRAE Enhanced Method

Space:

Infiltration works for area as OSA is OSA for SZ units

Prototype Minimum Ventilation

- The minimum ventilation requirements used for the prototype models follow ASHRAE 62.1-2010 Ventilation Rate Procedure.
- Ventilation = People Outdoor Air Rate + Area Outdoor Air Rate

Space Type	People Ventilation Requirement (CFM/Person)	Area Ventilation Requirement (CFM/SQFT)		
Classroom	10	0.12		
Gym	3.75	0.18		
Lecture Hall	7.5	0.06		
Movie Theater	10	0.06		
Movie Theater Lobby	5	0.06		
Retail	7.5	0.12		

Understand DOE 2 Limits and Proper Modeling of Unoccupied Fan Operation

DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

eQUEST Defaults at Work

Night Cycle Fan Control Default:

- "Stay Off" is default
- eQUEST adds 2 hours/day to fan schedule
 Options:
- "Cycle on Any" runs fan <u>full hour</u> on ANY load
- No option for
 - "on" during occupied and
 - intermittent" during unoccupied
- Intermittent with a 24 hour fan schedule is
 intermittent all the time
 Energy for Change

Solution: Use the Fan Schedule

- Hourly outputs analyzed for unoccupied load
- Monthly equivalent fan hours determined
- Schedules built up for prototypes

Not perfect, but closer than "cycle on any"

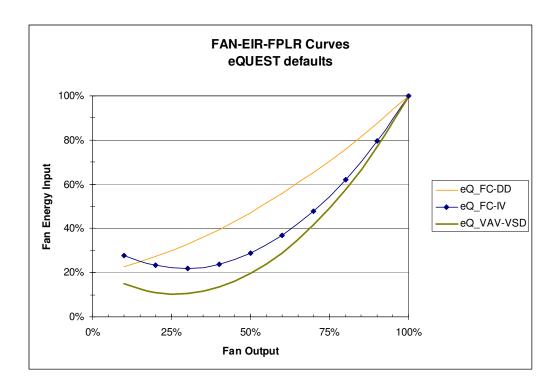
	Class room	Retail	Gym	Movie Theater	Lecture Hall	
January	1	3	4	3	2	
February	1	2	3	2	2	
March	1	2	2	2	1	
April	1	2	2	1	1	
May	0	1	1	1	0	
June	0	0	1	0	0	
July	0	0	1	0	0	
August	0	0	2	0	0	
September	0	0	1	0	0	
October	0	1	2	1	0	
November	1	2	2	2	1	
December	2	2	3	2	1	

Longer Run Hours with VFD

- Similar process
- Lower speed results in longer hours

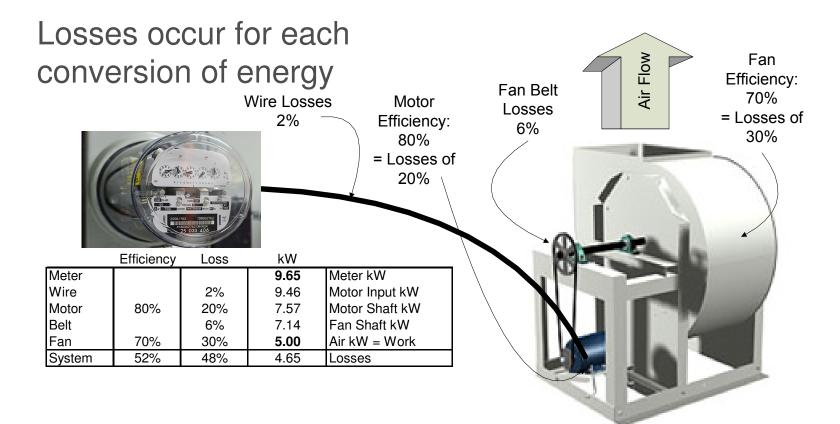
	Class room	Retail Gym		Movie Theater	Lecture Hall	
January	5	AII	AII	All	All	
February	2	All	All	All	All	
March	4	All	All	All	6	
April	3	8	8 All All		5	
May	1	4	6	3	1	
June	0	1	4	1	0	
July	1	0	0 5 0		0	
August	2	0	8	0	0	
September	0	0	5	5 1		
October	1	5	5 7 5		2	
November	4	7	AII	All	5	
December	All	All All All		5		

List Issues for Proper VFD Fan Modeling

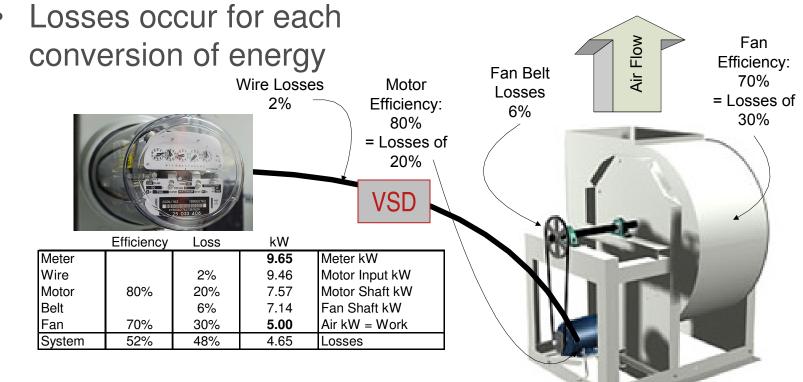

DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

FAN EIR-fPLR

- EIR-fPLR:
 - Energy Input Ratio
 - as a function of
 - Part Load Ratio
- Dimensionless
 - Other formulas or inputs define 100% energy input
 - Systems finds CFM for the hour



- EIR-fPLR curve quickly translates hourly fan output (cfm) to energy input
 - Does not require complexity of a ductwork model inside DOE2 or TRACE
 - Allows any separately calculated relationship to be input
- Default curves in the system for:
 - Forward Curve or Air Foil; Discharge Dampers or Inlet Vanes;
 - Any VSD; VaneAxial


Overall Fan System Efficiency Multiple Conversions = Multiple Losses

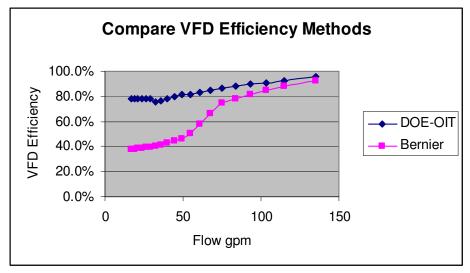
Overall system efficiency = [5.0 kW work] / [9.65 kW in] = 52%

Overall Fan System Efficiency Multiple Conversions = Multiple Losses

What is impact of VSD?

- The old rule of thumb is added constant losses of 5-10% of peak input
- Newer or larger units closer to 2%-3% of peak

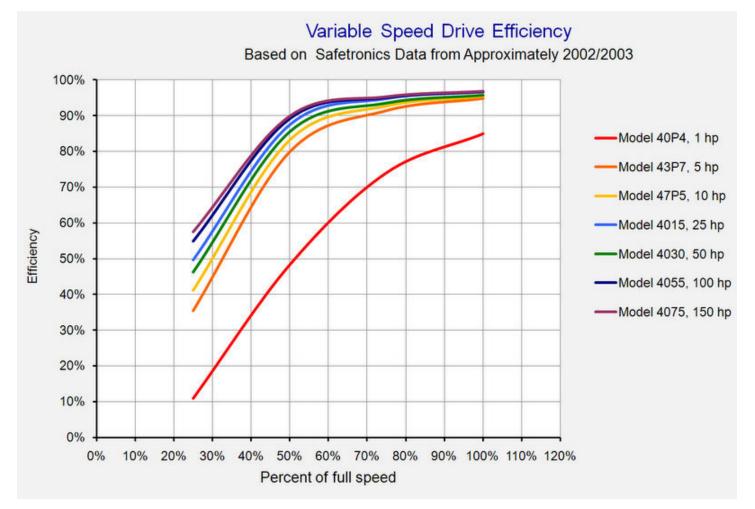
Energy for Change


pecr

VFD Efficiency – A Research ?

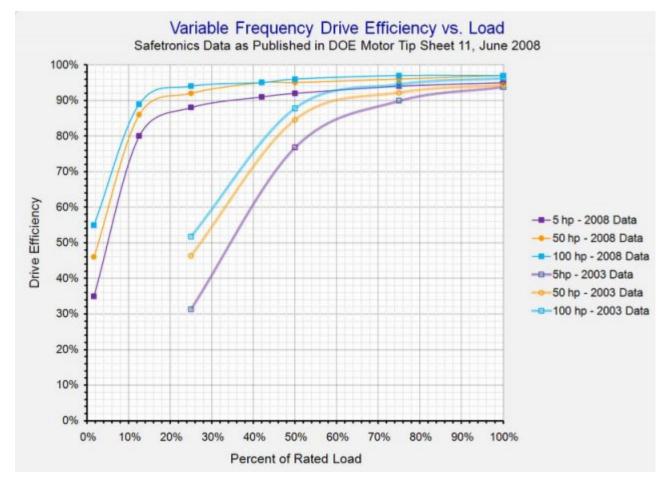
VFD losses must be included in EIR-fPLR curve

- Two available references for VFD efficiencies were used in FanSysCalc
- They have different part load curves, as shown at right
- The DOE-OIT method is based on a table published in three references:
 - USDOE OIT. Ask the clearinghouse: Variable speed drive part-load efficiency. January 2002. Energy Matters. Office of Industrial Technologies, US Department of Energy. http://www.ornl.gov/sci/buildings/20070205_ AuthorsManual_Jan2007.pdf
 - Chan, Tumin. August 2004. "Beyond The Affinity Laws." Engineered Systems Magazine. http://www.esmagazine.com/Archives?issue=65 496
 - Rooks, JA & Wallace, AK. 2003. Energy efficiency of variable speed drive systems. Pulp and Paper Industry Technical Conference, 2003.
- The Bernier method uses an equation published in
 - Bernier, MA & Bourret, B. December 1999.
 Pumping energy and variable frequency drives.
 ASHRAE Journal.


Further Reading:

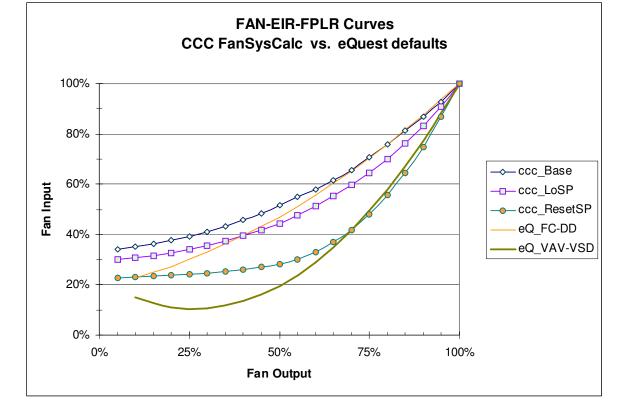
- Development of a Correlation for System Efficiency of a Variable-Speed Pumping System (ASHRAE 2008)
- Efficiencies of an 11.2 kW Variable Speed Motor and Drive (ASHRAE 2001)
- Non-Dimensional Pumping Power Curves for Water Loop Heat Pump Systems (ASHRAE 1999)
- Utilizing VFD for Building HVAC System Performance (ASHRAE 2008)
- Variable Flow in Chilled Water Systems-Benefits and Controls (ASHRAE 2006)

VSD: Size Matters



Sellers, David. A Field Perspective on Engineering. Dec. 18, 2010. http://av8rdas.wordpress.com/2010/12/18/variable-frequence-drive-system-efficiency/

VSD: Vintage Matters


Sellers, David. A Field Perspective on Engineering. Dec. 18, 2010. http://av8rdas.wordpress.com/2010/12/18/variable-frequence-drive-system-efficiency/

Simulating Static Pressure Reset in eQUEST/DOE2; TRACE

- Temperature reset
 - very easy in wizard
- Static Pressure reset
 - requires a new
 - FAN-EIR-fPLR curve
- The CCC
 FanSysCalc tool
 - is a good source to generate a realistic EIR-fPLR curve

Fan Cycling and VSD Control

- Each DCV prototype was modeled with three different fan control methods:
 - constant volume,
 - fan cycling, and
 - variable speed drive.
- The fan cycling and variable speed drive fan control methods respond to an increase or decrease in space temperature.
- Most packaged rooftop units are controlled such that the fan will operate during night time hours to meet heating and cooling loads.

Aspiration Duct Probe TR9293-L

Know How to Model DCV

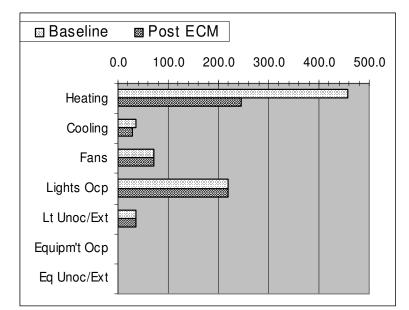
DOE 2.2 – Work-Arounds to Hidden Problems: eQUEST - A half hour to learn; three years to master.

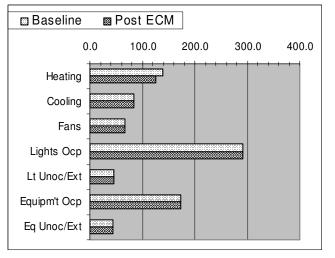
Demand Controlled Ventilation (DCV)

- Idea here is to provide
 - area ventilation rate when occupied,
 - then proportion people ventilation rate to actual occupancy
- Measure occupancy by:
 - Carbon dioxide (CO₂) concentration
 - Counters or security system
 - Schedule approximation
 - Camera technology

Demand Controlled Ventilation

- Use CO₂ as a proxy for adequate ventilation with CO₂ sensors
 - Odor: ~700 above background
 - Target 1000 to 1200 ppm
 - For 2-10 V CO₂ sensor where 2 V is 800 ppm, we want damper to start at 4 V or 1100 ppm
 - Damper is full open at 10 V or 2000 ppm
- For smaller areas:
 - Use occupancy sensors
 - Use scheduled ventilation





DCV Savings

Gym is a great application

- Go from 38% average OSA to 15%
- Save \$2200 per year, mostly heat

Office saves less, but may pay

- Only need 10-15% OSA; might reduce by 5%
- Save \$153 per year
- Save more if base case is over ventilated (typically is 20%)

Energy for Change

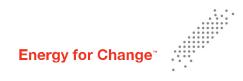
CO₂ Sensors

- Why are they used?
 - Energy Savings:

Aspiration Duct Probe TR9293-L

- Only when not in OSA economizer mode
- Eliminate over-ventilation when occupancy is low
- Coordinated with OSA economizer maximizes benefit of ventilation control and savings
- Establish transient space occupancy
- Alternate methods
 - Schedules, camera visualization, counters
 - VOC sensors (if co-related to CO₂)

CO₂ as Proxy for Air Quality


- Carbon Dioxide is JUST a proxy
 - Does not account for other chemicals
 - Does reflect space occupancy
 - Is not a "contaminant of concern"
- What do CO₂ levels mean?
 - Background outdoors 350 to 450 ppm
 - Equivalent to 15-20 cfm/person: 1000 ppm
 - OSHA limit for exposure > 8 hrs: 5000 ppm
 - Submarines: 7000 normal, 30,000 dive!

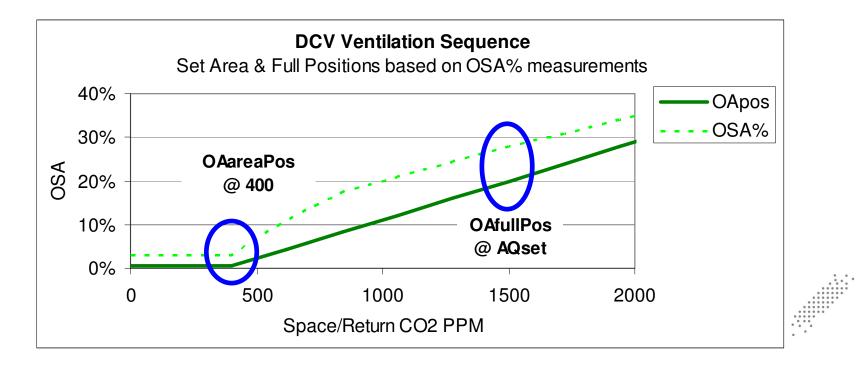
CO₂ Target Is <u>NOT</u> 700 ppm!

- DCV CO₂ concentration setpoint
 - Earlier standard called for 700 ppm CO₂ over ambient as target level
 - Ambient at 400 means 1100 ppm setpoint
- Actually is based on specific occupancy
- Explained well in the 62.1-2007 users manual
 - Steady state CO₂ C_B
- $C_{R} = C_{OA} + \frac{8400E_{z}m}{R_{p} + R_{a}A_{z}/p}$ Concentration lags occupancy
 - DCV allowed to control for steady state
 - Pre-purge not required; may be good

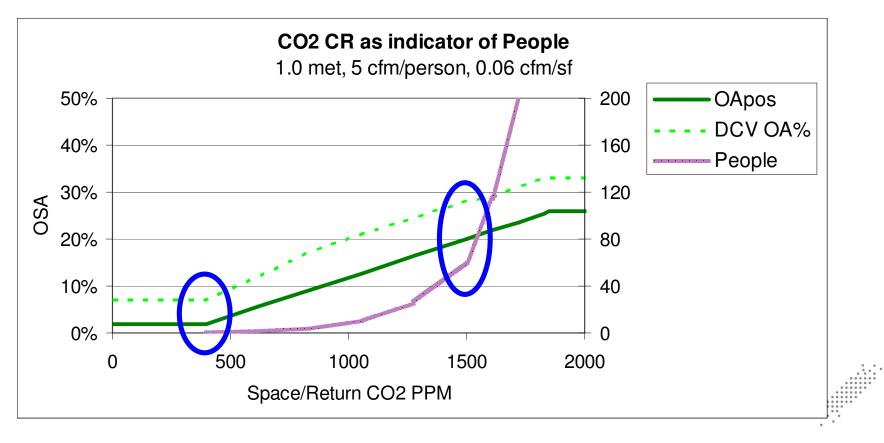
Find C_R for your space

- $C_{\rm R}$ is target CO_2
- $C_{R} = C_{OA} + \frac{8400E_{z}m}{R_{p} + R_{a}A_{z}/r}$ - Think OA% "area" & "full", not minimum
 - Met varies due to activity
 - Large ratio indicates more DCV savings potential
 - Where possible, use actual people & CFM, not defaults!

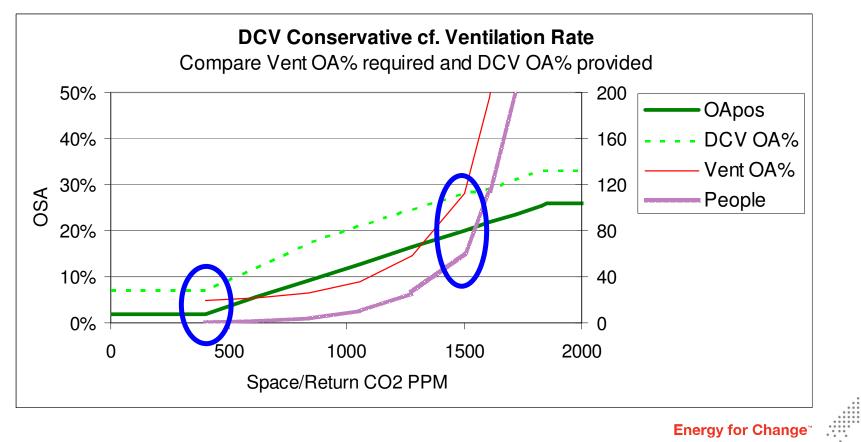
r									
ASHRAE 62.1-2010				Rp	Rs	CR	OA%	OA%	
Area Type	Pz	sf/p	met	cfm/p	cfm/sf	ppm	area	full	Ratio
Art Classroom	20	50	1.2	10	0.18	824	19%	40%	2.1
Office - default	5	200	1.2	5	0.06	874	6%	9%	1.4
Office - open	7	143	1.2	5	0.06	994	6%	10%	1.6
Class (age 9+)	35	29	1.2	10	0.12	1001	13%	49%	3.9
Retail Sales	15	67	1.5	7.5	0.12	1050	13%	24%	1.9
Grocery	8	125	1.7	7.5	0.06	1162	6%	13%	2.0
Call Center	12	83	1.2	5	0.06	1206	6%	13%	2.0
Lecture Class	65	15	1.1	7.5	0.06	1278	6%	57%	9.1
Movie Theater (actual)	77	13	1.0	5	0.06	1563	6%	46%	7.4
Conference	50	20	1.1	5	0.06	1592	6%	32%	5.2
Restaurant	70	14	1.4	5	0.18	1643	19%	55%	2.9
Assembly	150	7	1.0	5	0.06	1644	6%	84%	13.5
Rock Concert (dance)	100	10	2.0	5	0.06	2800	6%	58%	9.3


*For all types: area is 1000 square feet, COa = 400 ppm, Ez is 80%, unit cfm 1.2 cfm/sf

DCV: Step vs Analog Control

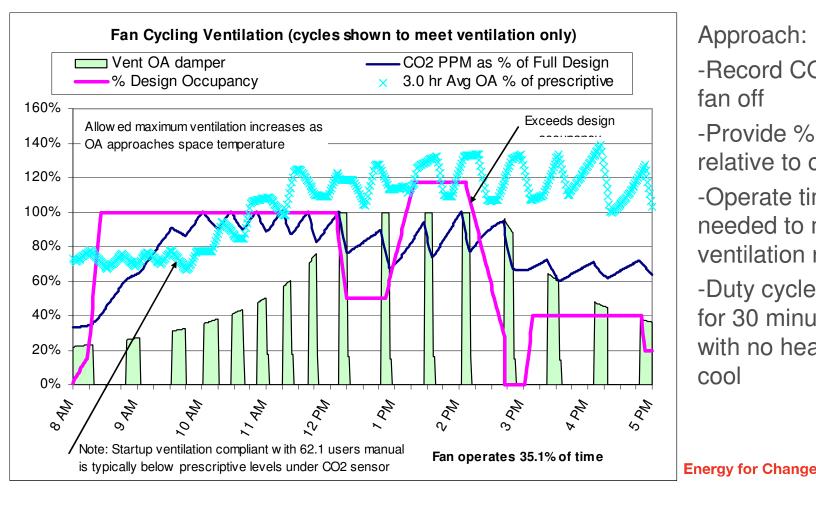

- Step control:
 - "full %" when approaching C_R or concentration target
 - Return to "area %" @ point between C_R and 400 ppm
- Analog control recommended by 62.1 User Manual
 - Area rate at 400-450 ppm
 - Area + people (full) rate at C_R target ppm
 - Note difference in damper position vs OSA%
- Analog is how DOE 2 models DCV according to people schedule

C_R as Indicator of People Concentration

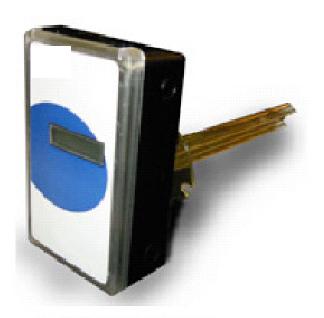

- C_R good up to typical high density
 - Curve goes exponential at maximum densities
 - 200 people per 1000 sf is 5 sf a person rock concert SRO
 - This is movie theater or assembly occupancy

Linear Control is Quite Conservative

- Compare DCV to prescriptive rate
 - High at lower proportional occupancy
 - Helps offset lag due to space volume



DCV Integrated Fan Control (DCV-IFC)



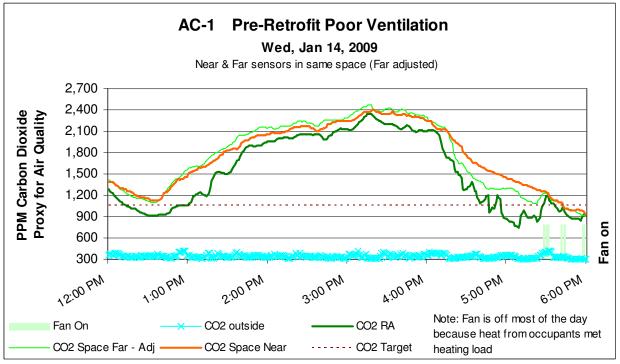
Yes, ASHRAE Standard 62.1 allows fan cycling

- General thinking: commercial fans must be ON during the occupied period
- Section 6.2.6.2 of ASHRAE Standard 62.1-2010 allows short-term interruption of ventilation if ventilation levels are maintained on average

Approach: -Record CO₂ at fan off -Provide % air relative to comfort -Operate time needed to match ventilation rate -Duty cycle if off for 30 minutes with no heat or cool

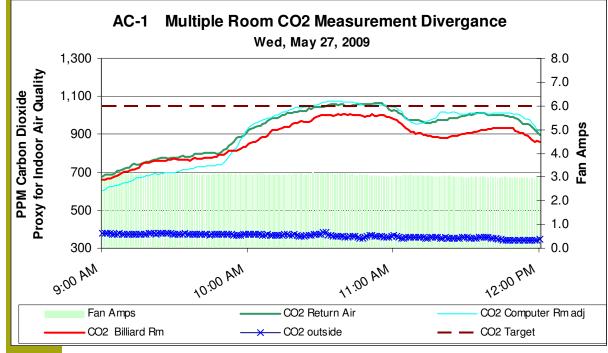
Aspiration Duct Probe

RTU DCV Ventilation Issues


Improve ventilation CO₂ Transmitter Accuracy Fan cycling Control setup and adjustment Alterations & Code

Current RTU Conditions

- TAB rare for RTUs
- OA minimum often set much too high
- Specific study of senior center

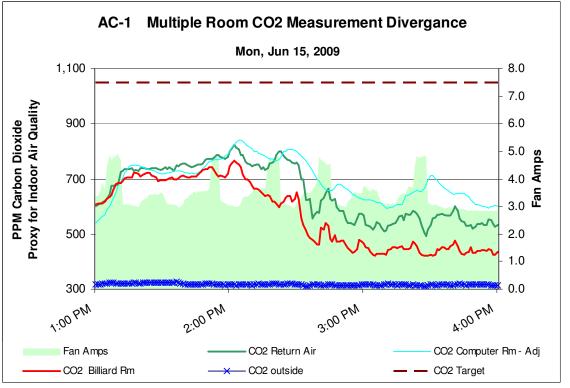


- Like here, fan is often in auto position (~40% RTUs)
- During January, little daytime fan operation
 - Heating load offset by internal gains
- CO² concentration almost triple desired level

RTU DCV Brings Significant Ventilation Improvements

- Fan slows when not heating or cooling, but remains on
- CO² sensor modulates damper to maintain proper ventilation rate

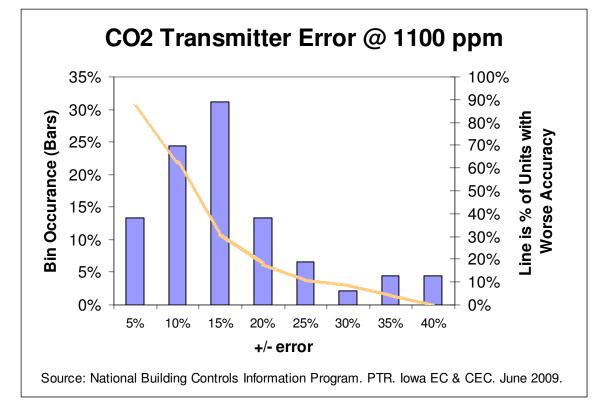
- After retrofit, highest CO² concentration within target limits.
- Single return air sensor worked for multiple rooms:
 - Computer lab
 - Billiard room



Easiest placement of the sensor is in the return air

Concerns:

- Studies suggest putting sensor in the breathing zone (California T24 code required)
- When multiple rooms are served by one unit, an imbalance in ventilation quality may occur with uneven occupancy
- With VSD, less air throw at the diffuser may reduce ventilation effectiveness.


Testing results:

- For smaller RTUs, even with one room heavily occupied, return air sensing can meet requirements with a slight ventilation setpoint adjustment
- Testing multiple places in one room showed little variation with lower airflow
 Energy for Change

69

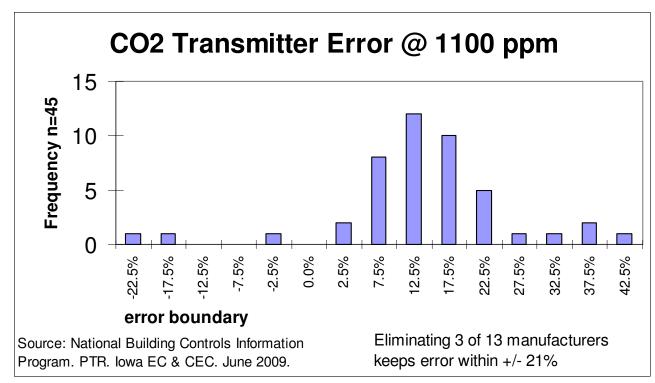
CO₂ Transmitter Accuracy

Aspiration Duct Probe

Source: http://www.energy.iastate.edu/ Efficiency/Commercial/ download_nbcip/PTR_CO2.pdf

NBCIP/ Iowa Energy Center Testing

Energy for Change


No manufacturers had all three samples within specs!

- Count on being within 200 ppm, usually high
- Many sensors saturate above 1700 ppm
- Self calibrating sensors improve persistence

Closer Look at Accuracy Impact

- Sensors are generally high; (mean = + 12%)
- Relative accuracy will maintain with self-calibration
- Particular manufacturers are at extremes

Reid Hart, PE

REFERENCES

rhart@peci.org

- Hart, R., Price, W., Morehouse, D. (2006). The Premium Economizer: An Idea Whose Time Has Come. In *Proceedings of the 2006 ACEEE Summer Study on Energy Efficiency in Buildings*. Pacific Grove, CA: ACEEE.
- Hart, R., Price, W., Taylor, J., Reichmuth, H. & Cherniack, M. (2008). Up on the Roof: From the Past to the Future. In *Proceedings of the 2008 ACEEE Summer Study on Energy Efficiency in Buildings*. Pacific Grove, CA: [ACEEE] American Council for an Energy-Efficient Economy.
- Hart, R. (2009). "Premium Ventilation Package Testing: Short-Term Monitoring Report Task 7." Portland Energy Conservation, Inc. (PECI) for Bonneville Power Administration (BPA). www.peci.org (Resources, commercial retail).
- Jacobs, P., Smith, V., & Higgins, C. (2003). Small Commercial Rooftops: Field Problems, Solutions and the Role of Manufacturers. In *National Conference on Building Commissioning: May* (Vol. 20, p. 22).
- Maxwell, Gregory, "Product Testing Report: Wall Mounted Carbon Dioxide (CO₂) Transmitters" (Iowa Energy Center, June 2009),
 - http://www.energy.iastate.edu/Efficiency/Commercial/download_nbcip/PTR_CO2.pdf.
- Nassif, N., Kajl, S., and Sabourin, R. (2005). "Ventilation Control Strategy Using the Supply CO 2 Concentration Setpoint." *HVAC&R Research*, 11(2), 239–262.

Pec I

Energy for Change[™]

