

For Businesses

For Homes

Renewable Energy

For Trade Allies

About Energy Trust

Energy Trust of Oregon, Inc. BSUG – April 16, 2008

Reminder

- Collegial Organization Volunteer
- Attend, Recruit, Participate

Sponsors

- The Energy Trust Funding
- NW Natural Space & AV
- ODOE Technical Input
- BPA Outreach
- NEEA Outreach
- ASHRAE PDHs for P.E.s

eQuest Intermediate Training Present Configuration

- Four sessions April 2, 9, 16 & 23
- 5:30 9:00 p.m.
- Hosted by the Energy Trust
- First session appeared to go very well
- Will have some holes in curriculum

Networking

- The meeting room will be open at least by 11:30 a.m. for casual networking
- Members will also be allowed to help setup tables, etc.

Today's Discussion

Modeling of Ground Source Heat Pumps in eQuest

Xiaobing Liu, PhD. ClimateMaster, Inc.

Geothermal Heat Pump System Simulation with Enhanced eQUEST

Xiaobing Liu, Ph. D. ClimateMaster xliu@climatemaster.com

- Introduction of geothermal heat pump (GHP) systems
- Overview of enhanced GHP simulation algorithms/capabilities of eQUEST
- Simulation-based design and energy analysis of GHP systems using eQUEST
- Current limitations and future enhancements
- Q & A

Geothermal Heat Pump Systems

Geothermal Heat Pump Systems

"the most energyefficient, environmentally clean, and cost-effective space-conditioning system"

"produce the lowest carbon dioxide emissions, including all source effects, of all available space-conditioning technologies"

(EPA, 1993)

Equivalent to

Geothermal Heat Pump Systems

- Hurdles in initial cost
- Hurdles in design
 - Cumulative heating and cooling loads required for sizing ground heat exchanger (GHX) is much more complicated to calculate than the peak loads
 - Performance of various type of GHX is affected by many factors and their design heavily relies on computerized calculation
 - Lack of GHX design required geology information
 - Unfamiliar with GHX related construction technologies
- Hurdles in the construction field

GSHP Simulation Algorithms/Capabilities

- Advanced model for vertical close loop ground loop heat exchangers (VGLHE)
- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
- Access to water-to-air heat pump libraries
- Capability for simulating advanced waterto-air heat pump with staged capacity and airflow

GSHP Simulation Algorithms/Capabilities

- Advanced model for vertical ground loop heat exchangers (VGLHE)
- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
- Access to water-to-air heat pump libraries
- Capability for simulating advanced water-toair heat pump with staged capacity and airflow

Modeling VGLHE

- Advanced model for VGLHE
 - Based on widely-accepted g-function algorithm developed by Eskilson et al at Sweden (1987)
 - Extended short-term g-functions for hourly simulation of VGLHE
 - Unlimited borehole field configurations *
 - Sophisticated borehole thermal resistance calculation that accounts for the effects of borehole geometry, grouting material, and antifreeze solution (Hellstrom 1991)

Example of g-functions

Example of normalized borehole wall temperatures (g-functions) in response to given constant heat rejection flux Superposition of piece-wise linear step heat inputs in time. The step heat inputs Q2', Q3' and Q4' are super-imposed in time on to the basic heat pulse Q1'.

Example of Borehole Field Configurations

Borehole Thermal Resistance

- Convective heat transfer resistance of the fluid in the U-tube
- Tube wall thermal resistance
- Conductive thermal resistance of grout

GSHP Simulation Algorithms/Capabilities

- Advanced model for vertical ground loop heat exchangers (VGLHE)
- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
- Access to water-to-air heat pump libraries
- Capability for simulating advanced water-toair heat pump with staged capacity and airflow

Dedicated Wizard Interface

- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
 - ✓ Water loop properties
 - ✓ Soil thermal properties & History
 - ✓ Ground heat exchanger properties
 - ✓ Fluid properties

Dedicated Wizard Interface

Dedicated wizard interface for specifying VGLHE

Soil/rock Types

Main Ground-Source HP Equipment Screen

GHX Configurations

Grout Types Sand, moist Sand, saturated Silt, dry Silt, moist/wet Till 20% Bentonite -40 30% Bentonite -30 30% Bentonite -30 60% Quartzite -Flo	Amphibolite Andesite Anhydrite Aplite Arkose Basalt Breccia Clay, dry Clay, moist/wet Claystone	Ground Ground Water Pur Loo Dop Loo Soil TI Gro Yea Gro Wizard S	ST Schematic Design Wizard nd-Source HP Equipment er Loop Properties Imp Config: Single Loop Pump(s) Only inop Flow: Constant Deration: Sub-Hour Demand roop Temp: Min: 30 °F Max: pop Pump(s) Number: Head:t Ft Flow: Head:t Ft Flow: Head:t Temp: 63.0 Thermal Properties & History round Temp: Specify ▼ Temp: 63.0 Dears of Previous Operation:19 round: Limestone, massive rout: - specify - Cond:50 Screen 39 of 50 ▼	▼ ▼ 110 °F 1 gpm °F @ yrs ▼ @ Btu/h-ft-°F	GHX Type: Vertica Configuration: Re Num of Identical W Depth: 250.0 ft Borehole Diameter Pipe Material: Pol Pipe Size: 3/4 in U-Tube Leg Separa GHX Pipe Head: Fluid Properties	al Well Field ctangle 4x8 /ell Fields: 3 : Spacing: 20.0 yethylene v Rating: SDR 11 ation: 3.0 : Concen: 20.0 % Next 20.0 %	? × units ft in ft ?	L Config 2x3 L Config 2x4 L Config 2x5 L2 Config 3x3 L2 Config 3x4 L2 Config 3x5 U Config 3x5 U Config 3x5 U Config 3x4 U Config 3x5 Open Rectangle 3x3 Open Rectangle 3x4 Open Rectangle 3x4 Open Rectangle 3x5 Rectangle 2x2 Rectangle 2x3 Rectangle 2x4 Rectangle 2x5 Rectangle 2x6 Rectangle 2x7 Rectangle 2x7 Rectangle 2x7 Rectangle 2x8 Rectangle 2x9 Rectangle 2x9 Rectangle 3x3 Rectangle 3x3 Rectangle 3x4 Rectangle 3x4	
			Fluid Types	Prop Wate Prop Etha Ethy Meth	ylene Glyco er ylene Glyco nol lene Glycol anol	ol			

Dedicated Wizard Interface

Water Loop Properties

Water Loop Properties				
Pump Config:	Single Loop Pump(s) Only			
Loop Flow:	Constant			
Operation:	Sub-Hour Demand 💌			
Loop Temp:	Min: 30 °F Max: 110 °F			
Loop Pump(s)	Number: 1			
Head:	ft Flow: gpm			
Motor Eff:	High 💌			

Tips:

- 1. To properly simulate variable flow, isolation valve option of heat pump should be "Yes".
- 2. Loop temperature range will affect both the sizes of GHX and heat pump(s).

- Pump configuration
 - ✓ Single Loop Pump(s) only
- Loop flow
 - ✓ Constant
 - ✓ Variable
- Operation
 - ✓ Standby
 - Demand
 - ✓ Sub-hour Demand
- Loop temperature range
- Loop Pump(s)

Dedicated Wizard Interface

Soil Thermal Properties & History

Soil Thermal Properties & History			
Ground Temp: Calculate 💌 Adj: 5.0 °F 🥑			
Years of Previous Operation: 0 yrs			
Ground: Amphibolite 💽 🕑			
Grout: 20% Bentonite -40% Quartzite 💌 🕐			

Tips:

- 1. For projects with large borehole field, in-situ test of ground thermal properties is highly recommended.
- 2. Specify "Years of previous operation" to assess the effect of heat/cool built-up on the performance of GHX.

- Ground temperature
 - ✓ Calculated via weather data
 - ✓ User specified
- Years of previous operation
- Ground thermal properties
 - Picked from built-in database
 - ✓ User specified
- Grout thermal properties
 - Picked from built-in database
 - ✓ User specified

Dedicated Wizard Interface

						eq_wiz		
Soil Thermal	Properties & I	History —				GSHP Gr Tempera	ound Temperature - Unc ature	listurbed Ground
Ground Te	mp: Calculate	e ▼ Ad	lj: 5.0 •	PF 👩		Mean Undis	turbed Ground Temperature.	
Years of Pi Ground: 「 Grout: 「	revious Opera Amphibolite 20% Bentonit	e -40% Qua	rtzite	(rs • 9) • 9)		The Mean I input is ava <u>Temperatur</u> wells. It is of a ground in the follow geothermal	Undisturbed (far-field) Ground ailable only if the user has choos <u>e Specification Type</u> and is used the mean undisturbed ground ter l loop heat exchanger. By defaul wing using the mean annual air te heat flux (2 ground), ground therr	Temperature (\overline{T}_{ground}) as "Specify" for the <u>Ground</u> for simulating vertical mperature along the depth t, it is estimated as shown emperature (\overline{T}_{abr}), nal conductivity (K_{ground})
Back Forv	→ 🚑 vard Print <u>(</u>	 ptions				T _g	$\mathbf{r}_{ac} = \overline{T}_{ac} + \frac{Q_{ground} - L_{GLHE}}{2 \cdot K_{ground}}$ $\mathbf{r}_{ac} \Rightarrow \mathbf{r}_{ac}$ $\mathbf{r}_{ac} \Rightarrow \mathbf{r}_{ac}$ $\mathbf{r}_{ac} \Rightarrow \mathbf{r}_{ac}$	
	rmal Dranar	tion Tabla					Current Theorem of Dura	
Ground The	rmal Proper	ties Table	Dennel Carda d'Au	156	NE		Grout Thermal Prop	perties Table
	rmal Proper	ties Table	/ Thermel_Conductivity (Meximum)	Difuseinity ((Recommended) (Cifesivily Kinimunt Cifesivi	iy m)	Grout Thermal Prop Description	oerties Table Themal Conductivity Btwhr-ft-F
Description	rmal Proper Themel_Conductivity (Recommended) Blader-8F 1.7	ties Table Thermal_Conductivity (Minimum) Bib/hr-H-F 11	/ Thermal_Conductivity (Neximum) Biohr-8-F 2.7	Difectivity I (Recommended) (Fif 2Alay 1.0	Criescivity Criescivi Vinimumi (Viecimu Ff'2/dey Ff'2/de	ity m) ry	Grout Thermal Prop Description Grouts wit	oerties Table Themal Conductivity Bitu/hr-ft-F hout Additives
Description Amphiluitie Antysisie	rmal Proper Tremel_Conductivity (Recommended) Bluin=8F 1.7 1.3 2.4	ties Table Thermal_Conductivity (Minimum) Bluthr-H-F 1.1 0.8 0.9	r Thermel_Canductivity (Neximum) Biblim-8-F 2.7 2.8 4.5	Difeesivity ((Recommended) (Fif 2/day 1.0 0.9 1.9	Critesivity Critesivi Vinimum) (Viesimu Ff2/day Ff2/da 1.1 1.7	ity m) sz	Grout Thermal Prop Description Grouts with Bentonite 10%, frozen	oerties Table Themal Conductivity Bitu/hr-ft-F hout Additives 0.8
Grouna The Desciption Anghiladite Anghile Anghile Advantite	rmal Proper Thems_Conductivity (Recommended) Biultre-BF 1.7 1.3 2.4 1.8 4.7	ties Table Thermal Conductivity (Minimum) Biblitr-I-F 1.1 0.8 0.9 1.5	/ Thermal_Conductivity (Neximum) Bioin-1-F 2.7 2.8 4.5 2.3 2.3	Discontry ((Recommended) (Fil 2May 1.0 0.9 1.9 1.9 1.2 1.2	Chesivity Chesivi Vinimumt (Mesimu Ff2Xkay Ff2Xka 1.1 1.7		Grout Thermal Prop Description Grouts wit Bentonite 10%, frozen Bentonite 10%, in water	oerties Table Themal Conductivity Bitwhr-ft-F hout Additives 0.8 0.4 0.4 0.4
Grouna The Description Anghilotite Andesite Anighte Adage Based Based	rmal Proper Themi_Cardusfiily (Recommended) Biulin-BF 1.7 1.3 2.4 1.8 1.7 1.0	ties Table Theme Conductivity (Minimum) <u>Babyr 4F</u> 1.1 0.8 0.9 1.5 0.8	/ Thermal_Conductivity (Neximum) Bituhr-1-F 2.7 2.8 4.5 2.3 2.2 1.4	Discontrated (Recommended) (Fi ² 2May 1.0 0.9 1.9 1.2 1.3 0.7	Offessivity Offessivi Minimum) (Missimu Ff ² Akey Ff ² Ake 1.1 1.7 	ity m) y	Grout Thermal Prop Description Grouts wit Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water	Image: Conductivity of the sector of the
Grouna The Description Anghilotite Andesite Anighte Adiaze Based Based Based Based Based Based Based Based Based	rmal Proper Theme_Conductivity (Recommended) Bluther BF 1.7 1.3 2.4 1.8 1.7 1.0 1.0 1.8 0.2	ties Table Thema (Andrefie) (Minimum) Bubyr-HF 1.1 0.8 0.9 1.5 0.8 1.3 0.8 1.3 0.2	/ Thermal_Conductivity (Neximum) Bitain-1-F 2.7 2.8 4.5 2.3 2.2 1.4 2.4 0.5	Difessivity I (Recommended) (1.0 0.9 1.9 1.2 1.3 0.7 0.7 0.2	Citessidy Citessid Winnun) (Masinu Ff2May Ff2Ma 1.1 1.7 0.5 0.9 0.2 0.5	ity m) y	Grout Thermal Prop Description Grouts wit Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen	Image: Conductivity of the second
Ground The Description Anythiotite Antosite Antosite Antose Based	rmal Proper Theme Conductive (Recommended) But PF 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.3 0.2	ties Table Thema (Andrefie) (Minimum) Bubyr-HF 1.1 0.8 0.9 1.5 0.8 1.3 0.8 1.3 0.2 0.5 0.2	/ Themai Conductivity (Neximum) Blahr-1-F 2.7 2.8 4.5 2.3 2.2 1.4 2.2 1.4 0.5 1.3	Difessivity I (Recommended) (1.0 0.9 1.9 1.2 1.3 0.7 1.2 0.7 0.7 0.2 0.8 0.2	Officesticity Officesticity Ninimum) (Maximum) Ff 2Max Ff 2Max 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.1		Grout Thermal Prop Description Grouts wil Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water	Image: Conductivity of the sector of the
Ground The Description Anythiotite Antesite Antose Based Based Breesin City, nuist - wel City, nuist - wel City, nuist - wel City, fruit	rmal Proper Theme_Conductivity (Recommended) Bluth=BF 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.2 0.2	ties Table Thema (Johnson) (Johnson) Buby -1F 1.1 0.8 0.9 1.5 0.8 1.5 0.8 1.3 0.2 0.5 0.8 0.2	/ Themail_Conductivity (Neximum) Blahr-8-F 2.7 2.8 4.5 2.3 2.2 1.4 2.4 0.5 1.3 1.3 1.7 0.4	Disessivity I (Recommended) (1.0 0.9 1.9 1.2 1.3 0.7 1.2 0.3 0.7 1.2 0.3 0.7 0.2 0.8 0.9 0.2	Officestricity Officestricity Information (Maximum) Information Information 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1		Grout Thermal Prop Description Grouts will Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water Bentonite 40%, in water Bentonite 40%, in water	Image: Conductivity of the sector of the
Ground The Description Anythiotite Antesite Antosite Antose Based Based Based Based Based Based City, dry City, maist - wel City, dry City, maist - wel City, dry Case Cose Cose Cose Cose Cose Cose Cose Co	rmal Proper Themei_Conductivity (Recommended) Blath: #F 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.9 1.3 0.2 0.9 1.3 0.2 0.9 1.3 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	ties Table Thema (Johnson) (Minimum) Bubre 4F 1.1 0.8 1.5 1.5 0.8 1.5 0.8 1.3 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	/ Themai Conductivity (Neximum) Bioin-1-F 2.7 2.8 4.5 2.3 2.2 1.4 2.4 0.5 1.3 1.3 1.7 0.4 1.2 2.4	Difessivity I (Recommended) (1.0 0.9 1.9 1.2 1.3 0.7 1.2 0.3 0.7 0.2 0.8 0.9 0.2 0.8 0.2 0.8	Officesivity Officesivity Inimumity (Maximumity) Inimumity Inimumity 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.1 0.5 0.1 0.5 1.2	ity m) <u>y</u>	Grout Thermal Prop Description Grouts will Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water	Image: Conductivity options Image: Conduc
Ground The Description Anythiotite Antesite Antosite Antose Based Based Based Based Based Based Cary maist-wel Cary maist-well Cary maist-well Car	rmal Proper Theme_Conductivity (Recommended) Blath=BF 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.9 1.3 0.2 0.9 1.3 1.3 0.2 0.9 1.3 1.5	ties Table Thema Conductivity (Minimum) Bubre 4F 1.1 0.8 0.9 1.5 0.8 1.5 0.8 0.8 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.5 0.8 0.5 0.5 0.8 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	/ Themai Conductivity (Neximum) Blahr-8-F 2.7 2.8 4.5 2.3 2.2 1.4 2.4 0.5 1.3 1.7 0.4 1.2 2.1 1.9	Disessivity I Recommended) (FF 2May 1.0 1.0 0.9 1.2 1.3 0.7 1.2 0.3 0.7 0.2 0.8 0.8 1.2	Officesivity Officesivity Inimumity (Maximumity) Inimumity Inimumity 1.1 1.7 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.11 0.5 0.11 0.5 1.2 0.5 1.2 0.7 1.0	ity m) <u>y</u>	Grout Thermal Prop Description Grouts wil Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water Bentonite, dry Clay, dry Clay, dry Clay, dry	Image: Conductivity options Image: Conduc
Ground The Description Anythiotite Antesite Antesite Antose Based Based Based Based Based Based Based Based Based Cary muist Cary mu	rmal Proper Thema Cardodidy (Recommended) But BF 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.9 1.3 0.2 0.9 1.3 0.2 0.9 1.4 1.5 1.9	ties Table Thema Conductivity (Minimum) Bubre 4F 1.1 0.8 0.5 0.8 1.3 0.2 0.5 0.8 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	/ Themsi Conductivity (Neximum) Bioin-1-F 2.7 2.8 4.5 2.3 2.2 1.4 2.4 0.5 1.3 1.3 1.7 0.4 1.2 2.1 1.9 3.8 2.7	Disesting I Recommended) (1.0 0.9 1.2 1.3 0.7 1.2 0.3 0.7 0.2 0.8 0.9 0.2 0.8 0.2 0.8 1.2 1.2 1.3 0.7 1.2 0.8 0.9 0.2 0.8 1.2 1.3	Officesivity Officesivity Infinituret (Maximum Infinituret Infinituret 1.1 1.7 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.1 0.5 1.2 0.5 1.2 0.7 1.0 0.8 2.3	ity m) <u>y</u>	Grout Thermal Prop Description Grouts wil Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water Bentonite, dry Clay, moist - wet Concrete Grouted dry	Image: Conductivity options Image: Conduc
Ground The Description Amphibuile Andesile Andresile Andresile Andresile Andresile Andresile Andresile Andresile Andresile Breesil Breesil Breesil Breesil Breesil Breesil Cary, maiel - wel Cary, maiel - wel Cary, maiel - wel Cary, maiel - wel Cary, maiel - wel Caryofarre Canadomersile Dianile Danile Echagile	rmal Proper Thema Cardodidy (Recommended) But BF 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.9 1.3 0.2 0.9 1.3 0.2 0.9 1.4 1.5 1.7 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.7 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	ties Table Thema Conductivity (Minimum) Bubre 4F 1.1 0.8 0.9 1.5 0.8 1.3 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.8 1.3 0.2 0.5 0.8 1.1 0.8 0.5 0.8 0.5 0.8 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.3 0.2 0.5 0.8 1.1 0.3 0.3 0.3 0.3 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Themsil Conductivity (bioinum) Bioinum) Bioinum 2.7 2.8 4.5 2.3 2.2 1.4 2.4 D.5 1.3 1.7 0.4 1.2 2.1 1.9 3.8 2.7 2.4	Dissivity I Recommended) (F72May 1.0 0.9 1.9 1.2 1.3 0.7 1.2 0.3 0.7 0.2 0.8 0.8 1.2 0.8 0.2 0.8 1.2 1.2 1.3 0.3 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.3 0.9 9.9	Officesivity Officesivity Inimumity (Maximum) Inimumity Inimumity Inimumity Inimumity 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.1 0.5 0.1 0.5 1.2 0.7 1.0 0.8 2.3	ity m) <u>y</u>	Grout Thermal Prop Description Grouts wil Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water Bentonite, dry Clay, moist - wet Concrete Gravel, dry Gravel, saturated	Image: Conductivity options Image: Conduc
Ground The Description Amphibility Andesity Ande	rmal Proper Thema Cardodidy (Recommended) But alf 1.7 1.3 2.4 1.8 1.7 1.0 1.8 0.2 0.9 1.3 0.2 0.9 1.3 0.2 0.9 1.4 1.5 1.7 1.1 1.7 1.1 1.7 1.1 1.7 1.7	ties Table Thema Conductive (Minimum) Bubre 4F 1.1 0.8 0.9 1.5 0.8 1.3 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.2 0.5 0.8 1.1 0.8 1.3 0.2 0.5 0.8 1.1 0.8 1.3 0.2 0.5 0.8 1.1 0.8 1.3 0.2 0.5 0.8 1.1 0.8 0.8 1.3 0.2 0.5 0.8 1.1 0.8 0.8 0.5 0.8 0.5 0.8 0.2 0.5 0.8 1.1 0.9 0.5 0.8 1.1 0.9 0.5 0.8 1.1 0.9 0.5 0.8 1.1 0.9 0.5 0.9 1.1 0.9 0.5 0.9 1.1 0.9 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Themsil Conductivity (bissimum) Bishr-8-F 2.7 2.8 4.5 2.3 2.2 1.4 0.5 1.3 1.7 0.4 1.2 2.1 1.3 3.8 2.7 2.4 3.8 2.7 2.4 1.8 3.3 3.3	Dissivity I (Recommended) (F72May 1.0 0.9 1.9 1.2 1.3 0.7 1.2 0.8 0.9 0.9 0.9 0.12 0.8 0.2 0.8 1.2 1.3 0.9 0.2 0.8 1.2 0.8 1.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.3 0.3 1.3 0.9	Officesivity Officesivity Infinituret (Mosimu Infinituret (Mosimu Infinituret Infinituret 1.1 1.7 0.5 0.9 0.5 0.9 0.5 0.1 0.5 0.1 0.5 1.2 0.7 1.0 0.8 2.3 0.7 1.2 0.7 1.2 0.7 2.3	ity m) 52	Grout Thermal Prop Description Grouts wil Bentonite 10%, frozen Bentonite 10%, in water Bentonite 20%, in water Bentonite 40%, frozen Bentonite 40%, in water Bentonite 40%, in water Bentonite 40%, in water Bentonite, dry Clay, moist - wet Concrete Gravel, dry Gravel, saturated Sand dry	Image: Conductivity options Internal Conductivity Btw/hr-ft-F hout Additives 0.8 0.4 0.3 0.5 0.3 0.1 0.2 0.9 0.2 1.0 0.2

Dedicated Wizard Interface

Ground heat exchanger (GHX) properties

GHX Type: Vertical Well Field
Configuration: Rectangle 3x5
Num of Identical Well Fields: 1 units
Depth: 200.0 ft Spacing: 20.0 ft
Borehole Diameter: 6.0 in
Pipe Material: Polyethylene 💽 🥑
Pipe Size: 3/4 in 💌 Rating: SDR 11 💌
U-Tube Leg Separation: 3.9 in
GHX Pipe Head: ft

Tips:

- 1. For access to other borehole field configurations, contact ClimateMaster.
- 2. Default GHX pipe head is 30 ft. Change when necessary.

- GHX Type
 - ✓ Vertical well field
- Configuration
 - ✓ 42 built-in borehole config
 - ✓ Maximum 32 boreholes
- Num of identical well fields
- Borehole depth
- Borehole spacing
- Borehole Diameter
- Pipe material, size, pressure rating
- U-tube leg separation
- GHX Pipe head

Dedicated Wizard Interface

Fluid Properties

Fluid Properties				
Fluid:	Propylene Glycol		•	0
Α	nti-freeze Concen:	20.0	%	

Tips:

1. Select weight concentration of anti-freeze compound based on: design min. loop temperature less max. temperature difference between supply and return.

Freezing point [F]

Anti-freeze Compound	Anti-freeze concentration (% of weight)						
	0	10	20	30	40		
Ethylene Glycol	32	26.2	17.9	6.7	-8.1		
Propylene Glycol	32	26.1	19.2	9.2	-6		
Methanol	32	20	0	-15	-40		
Ethanol	32	25	12	-4	-21		

- Fluid type
 - ✓ Water
 - ✓ Anti-freeze solution
 - Propylene Glycol
 - Ethylene Glycol
 - Methanol
 - Ethanol
- Anti-freeze weight concentration

(if aqueous anti-freeze solution is selected)

GSHP Simulation Algorithms/Capabilities

- Advanced model for vertical ground loop heat exchangers (VGLHE)
- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
- Access to water-to-air heat pump libraries
- Capability for simulating advanced water-toair heat pump with staged capacity and airflow

Water-to-Air Heat Pump Library

🕯 eQUEST Scher	natic Design Wizard	? 🔀
Packaged HVAC Eq	uipment	
HVAC System 1:	Ground-Source Heat Pump Select from GSHP Library	The access to heat pump library is only
Overall Size: Typical Unit Size:	Auto-size 💌 💌	available after proper installation of the add-on feature from
Efficiency:	EER	ClimateMaster
Heating Size: Efficiency:	Auto-size COP 4.200	
Wizard Screen 21 of 4	1 - <u>H</u> elp	<u>P</u> revious <u>N</u> ext Screen Screen <u>F</u> inish 🔆

Water-to-Air Heat Pump Library

- Four-steps heat pump selection procedure
- Information include heating and cooling capacities, EER, COP, airflow, water flow, pressure drop, ESP, and etc at ARI/ASHRAE/ISO rating conditions
- Performance curves at off-rating conditions

eQUEST Heat Pump Library Selection	?×
Heat Pump Equipment Library Selection	
Library: CM GSHP/WSHP Equipment Library (HWF)	
Main Mode: Cooling 💌	
Cooling - Capacity: 36-42 kBtuh or 3-3.5 tons	
Efficiency: 18-20 Btuh/W	
Selected Equipment: CM Water-to-Air GSHP TT038	
Tranquility 27 2-Stage Water-to-Air HP TT038 60Hz-R4: For GSHP Application Total Cooling Capacity: 38.2 kBtuh Sensible Cooling Capacity: 30.3 kBtuh Heating Capacity: 29 kBtuh EER: 18.2 Btuh/W; COP: 4.0 Btuh/Btuh Nominal airflow: 1250 CFM ESP: 0.5 [Rated] in. wg Fluid flow rate: 9.0 GPM; Head loss: 10.6 ft	
<u>H</u> elp 🕐 <u>D</u> one	*

Water-to-Air Heat Pump Library

Performance curves required by DOE-2.2 for W-A heat pump simulation

Curve Name	Irve Name Description	
TC = f(EWB, EFT)	Correction factor for Total Cooling (TC) capacity as a function of the Entering Wet Bulb temperature (EWB) and the Entering Fluid Temperature (EFT).	For cooling
SC = f(EWB, EFT)	Correction factor for Sensible Cooling (SC) capacity as a function of the Entering Wet Bulb temperature (EWB) and the Entering Fluid Temperature (EFT).	For cooling
EIR_C = f(EWB, EFT)	Correction factor for Electric Input Ratio (EIR) as a function of the Entering Wet Bulb temperature (EWB) and the Entering Fluid Temperature (EFT).	For cooling
BPF = f(EWB, EFT)	Correction factor for Bypass Factor (BPF) as a function of the Entering Wet Bulb temperature (EWB) and the Entering Fluid Temperature (EFT).	For cooling
HC = f(EDB, EFT)	Correction factor for Heating Capacity (HC) as a function of the Entering Dry Bulb temperature (EDB) and the Entering Fluid Temperature (EFT).	For heating
EIR_H = f(EDB, EFT)	Correction factor for Electric Input Ratio (EIR) as a function of the Entering Dry Bulb temperature (EDB) and the Entering Fluid Temperature (EFT).	For heating
$EIR_C = f(PLR)$	Correction factor for Electric Input Ratio (EIR) as a function of Part Load Ratio (PLR).	For cooling
$EIR_H = f(PLR)$	Correction factor for Electric Input Ratio (EIR) as a function of Part Load Ratio (PLR).	For heating

Non-PLR

РГВ

Water-to-Air Heat Pump Library

Example of performance curves

GSHP Simulation Algorithms/Capabilities

- Advanced model for vertical ground loop heat exchangers (VGLHE)
- Dedicated wizard interface for specifying VGLHE with on-line help, database, and/or design tips for each input entry
- Access to water-to-air heat pump libraries
- Capability for simulating advanced water-toair heat pump with staged capacity and airflow

Staged Capacity and Airflow

Two-stage scroll compressor

67% Capacity 100% Capacity

ECM variable speed fan motor

Advantage of heat pump with staged capacity and airflow

- High efficiency cooling and heating at part load conditions
 - ✓ Oversized heat exchangers
 - ✓ Reduced airflow
- Improved humidity control due to longer run time
- More precise temperature control

Staged Capacity and Airflow

Staged Capacity and Airflow

Air-Side HVAC System Parameters ? 🔀
Currently Active System: Sys1 (PVVT) (G.S1) System Type: Pkgd Var Vol Var Temp
Basics Fans Outdoor Air Cooling Heating Preconditioner Meters Refrigeration
Coil Cap / Control Unitary Power Preht / Basebrd Supp Heat/Defrost Cap Curves/Waste Ht Stages
Heating & Cooling Staging Control: Staged Volume
Cooling Stages Heating Stages
Fraction °F Fraction °F
Stage 1: 0.6700 0.0000 0.7300 -
Stage 2: 1.0000 0.0000 0.0000
Stage 3: n/a n/a n/a
Stage 4: n/a n/a n/a
(Done)

Staged Capacity and Airflow

Air-Side HVAC System Parameters ? 🔀
Currently Active System: Sys1 (PVVT) (G.S1) System Type: Pkgd Var Vol Var Temp Basics Fans Outdoor Air Cooling Heating Preconditioner Meters Refrigeration
Fan Power and Control Flow Parameters Night Cycle Control
Flow Parameters for single-duct systems Design Min Flow Min Flow Min Fan Max Fan cfm cfm/ft2 Ratio Ratio Ratio
Supply Flow: 0.30 1.00 Heating Mode: 0.85 0.30 1.00 Return Flow: n/a 0.85 0.30 1.00
Min Flow Source: n/a Indoor Fan Mode: Continuous
Dual Speed Fan/Compressor Ratios Induction Ratio: n/a n/a n/a n/a Return Cap Ratio: n/a
(Done

Example of Two-stage Performance Curves

Normalized Total Cooling (TC) Capacity

Due to the similarity, the average of the non-PLR curves at two stages is used to represent the characteristics of the heat pump and DOE-2 does not distinguish whether the compressor runs at low or high stage.

Example of Two-stage Performance Curves

EIR as a function of PLR

Verification and Validation

- Verification of newly implemented g-function based VGLHE model
- Sensitivity study through parametric runs
- Validate predicted whole building and GHP system energy consumption with monitored meter level data
- Validate predicted whole building and GHP system performance (including energy consumption, loop/room temperature, and etc) with detailed component level data *
- * Ongoing process using monitored data from a fully instrumented Zero Energy Home.

Verification and Validation

VGLHE Model Verification

Enhanced eQUEST vs. HVACSIM⁺ (experimentally validated model)

Verification and Validation

Validation with Meter Level Data (1)

VGLHE 40 boreholes 5 by 8 grid 250' deep 20' spacing 4.5" bore diameter ³⁄4" PE U-tube Standard grout

Zoning

Two floors 7 perimeter zones each floor 1 core zone each floor Each zone conditioned with individual water-air heat pump

Verification and Validation

Validation with Meter Level Data (2)

Total Building Electric Consumption [kWh]

Garrett Geothermal Building

Thermal Model 3-D view in eQUEST

Monthly Electric Use (kWh)

Annual Total Electric Use (kWh)

Metered	Predicted	Error
249,920	236,790	5%

Integrated Simulation-Based Design

 No hassles any more in transferring data among individual programs

Estimate building loads using various tools/software

Size ground heat exchanger using OTHER tools/software

 Assess GHP system design by examining the system performance in virtual reality

Integrated Simulation-Based Design

- Document energy savings for LEED certification, energy efficiency incentives, and etc.
- Optimize design of high performance building toward the goal of Zero Energy

The above illustration is from http://www.ideal-homes.com/

Zero Energy Home GSHP ERV PV panel Better insulation Double low-e windows Compact Fluorescent Lights Energy efficient appliances

Applications

Example of HVAC Systems Comparison (1)

- Building Type: Hotel
- Area: 66,000 sf
- Candidate HVAC systems
 - ✓ PTAC with electric heater
 - ✓ GHP with VGLHE
- Equipment efficiency
 - ✓ PTAC: EER 8.8
 - ✓ GSHP: EER 18.5; COP 4.0
- Utility rates: OG&E PL-1 SL-5

Applications

Example of HVAC Systems Comparison (2)

2: GHP (\$ 45,834)

Applications

Example of HVAC Systems Comparison (3)

Applications

Example of HVAC Systems Comparison (4)

This graph is made with Excel using the hourly results predicted by eQUEST

Applications

Sizing GHX with eQUEST

- GHX can not be automatically sized by eQUEST
- The default GHX parameters of eQUEST may be only valid for small commercial buildings
- "Rule of Thumb" of GHX design (i.e. 200 ft bore per ton) may be used as a starting point of the simulation-based design of the GHX
- Iterative process

"Rule of Thumb" →Initial run→Examine hourly report of GHX leaving fluid temperature (LFT)→ Adjust GHX parameters→ Run simulation

Repeat until LFT within the specified loop temperature range

Applications

Example of GHP System Design (1)

157 town homes grouped in 18 buildingsVarying in height from 2 to 4 storiesRanging in size from 1600 sf to 3517 sfOver twenty-six floor plans

Challenges in design

- Boreholes are limited in garage only
- Attached homes but with individual loop for each home
- Very short time for design

Solution

 Integrated simulation with customized gfunction for VGLHE modeling

Result

 VGLHE size varies from 200 – 280 ft/ton depending on location, orientation, window/wall ratio of each town home

Applications

Applications

Example of GHP System Design (3)

600-700

The graphs are made with Excel using the hourly results predicted by eQUEST

Applications

Example of GHP System Design (4)

Annual Max. & Min. VGLHE Leaving Fluid Temp. [F]

This graph is made with Excel using the hourly results predicted by eQUEST

Summary

- To overcome hurdles in GHP system design, eQUEST has been enhanced to facilitate the integrated simulationbased design process
- Extensive efforts have been conducted to validate the enhanced eQUEST and more intensive validation is ongoing
- The enhanced eQUEST is making revolutionary change in GHP system design

Limitations and Future Enhancements

- Prediction of GHP system long-term performance
- Hybrid GHP systems: combination of a variety of heat sink and/or source
- Geothermal water-water heat pump with integrated domestic hot water heater
- Other types of GHX, including horizontal loop, pond/lake, standing column well, and other emerging technologies

Geothermal Heat Pump System A smart solution for energy efficiency

Thank You!

Questions?