

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations

Paulo César Tabares-Velasco, Ph.D. Postdoctoral Researcher National Renewable Energy Laboratory ASHRAE Energy Modeling Conference

April 4, 2011

Work done at: Building Science Group

Architectural Engineering Dept.

Pennsylvania State University

Outline

- 1. Introduction
- 2. Heat and Mass Transfer
- 3. Current Capabilities and Limitations
- 4. Inputs
- 5. Conclusions

Roofs

Roofs receive an important amount of solar radiation during summer

 50% more in summer months than south walls at 40°N latitude (Duffie and Beckman 1991)

Green roofs are becoming a popular sustainable technology

- Growth of 30%–50% during the last 5 years
- 703 green roofs nationwide
- ~102 acres (greenroofsplants.com)

Green Roofs

Green roofs are "specialized roofing systems that support vegetation growth on rooftops"

Consist of several layers:

- 1. Vegetation
- 2. Substrate (porous media)
- 3. Drainage/filter membrane

Green Roof Classification

Extensive

- Substrate thickness < 6"
- Lower costs and loading capacity
- Limited selection of hardy plants, and
 - Sedums, Delosperma...
- Two thirds of total green roof area installed in North America

Intensive

- Substrate thickness >6"
- Higher cost and maintenance
- Irrigation (usually)
- Wider variety of plants

Green Roof Benefits

- 1. Reduce energy demand on space conditioning
- 2. Extend life of roofing membrane
- 3. Reduce the urban heat island effect in cities
- 4. Reduce storm water runoff
- 5. Improve air quality
- 6. Improve roof aesthetics

Green Roof Drawbacks

- 1. Cost (\$10-24 ft²)
- 2. Hard for retrofit
- 3. More complicated design
- 4. Water leaks?
- 5. Structural load

Outline

- 1. Introduction
- 2. Heat and Mass Transfer
- 3. Current Capabilities and Limitations
- 4. Inputs
- 5. Conclusions

Thermal Benefits of Green Roofs

Not a conventional insulation material

Modulate heat flux through the roof by:

- Shading
- Insulation
- Thermal mass

- Evapotranspiration (ET, Q_{ET})

Combined effect:

Plants and substrate

Require energy and mass balance

Energy Balance

Traditional Roof

$$R_N - Q_{sensible} - Q_{roof} = 0$$

$$R_N - Q_{sensible} - Q_{ET} - Q_{substrate} = \mathbf{0}$$

Where, R_N Q_{sensible}

Q_{FT}

= net radiation

= sensible heat flux due to convection

- = latent heat flux due to convection
- substrate/roof = conductive heat flux through roof

 $R_N = Q_{ET} + Q_{sensible} + Q_{roof,GR}$

Substrate wetness	$rac{Q_{ET}}{R_N}$	$rac{Q_{sensible}}{R_N}$	$\frac{Q_{roof,GR}}{R_N}$
"Wet"	0.68	0.23	0.09
"Dry"	0.29	0.57	0.14

Tabares – Velasco & Srebric. 2011

Accurate energy balance required mass balance and vice versa

Net Radiation

 $= Q_{ET} + Q_{sensible} + Q_{substrate}$ R_{N}

- Absorbed short-wave irradiance
- Thermal radiative heat transfer between:
 - Plants and sky
 - Plants and top substrate

$$R_{n} = Q_{solar} \left(I_{solar}, \rho_{soil}, \rho_{leaf}, \tau_{solar}, LAI \right) + Q_{IR} \left(T_{sky}, T_{soil}, T_{leaf}, \varepsilon_{soil}, \varepsilon_{leaf}, \tau_{IR}, LAI \right)$$

Evapotranspiration

Constant

solar reflectance = solar reflectance
$$\times Q_{ET_{factor}}$$

Bowen Ratio

Vapor Pressure Differential Plant's stomata resis Soil/Substrate resista

tance,
$$\mathbf{r}_{s}$$

ance, \mathbf{r}_{s}
 $Q_{ET} = \frac{\rho C_{p}}{\gamma (r_{s} + r_{a})} (e_{so} - e_{air})$

$$r_{s} = \frac{r_{l}}{LAI} f(solar) f(water) f(VPD) f(temp)$$

<u>Plants transpiration is controlled by stomatal resistance: adjustable</u> pores in the leaf that allow the gas transport into leaf/enviroment

olar reflectance ×
$$Q_{ET_{factor}}$$

$$Q_{ET} = \frac{Q_{sensible}}{\beta} = \frac{h_{convection}(\Delta T)}{\beta}$$

$$R_N = Q_{ET} + Q_{sensible} + Q_{substrate}$$

Conduction

$$R_N = Q_{ET} + Q_{sensible} + Q_{substrate}$$

- Thermal conductivity depends on substrate type and water content
- Previous soil models overestimate thermal conductivity of green roof substrate

Outline

- 1. Introduction
- 2. Heat and Mass Transfer

3. Current Capabilities and Limitations

- 4. Inputs
- 5. Conclusions

Studies

- Field Experimentation:
- Temperature Reduction (Hoeschele and Schmidth 1977)
- Heat Flux Reduction (Liu and Baskaran 2003)
- R-value (Minke et al. 1982, Wong et al. 2003)
- Evapotranspiration (Schmidt 2003, Berghage et al. 2007)

Wind Tunnel/Lab:

- R-value (Bell and Spolek 2009, Tabares-Velasco and Srebric 2009)
- -Cooling effect (Onmura et al. 2001)
- -Soil evaporation (Yamanaka et al. 1997)
- Soil properties (Sailor et al 2008)

Full Laboratory Experimentation

(Tabares-Velasco 2009, Tabares-Velasco and Srebric 2011)

Berghage et al. 2007

Software and Models

Theoretical Models:

- Early model (Saiz Alcazar 2005, Hilten 2005, Wong et al 2003)
- Latest models (Gaffin et al. 2005, Sailor 2008, Tabares-Velasco and Srebric 2009)

Software:

- Using early models: DOE 2
- Using latest models : ESP-r, EnergyPlus, MIT Design Advisor
- Web-based: Green Roof Energy Calculator

Gaps and Limitations: Previous Studies

- 1. Experimental data for validation
- 2. Complete model validation
- 3. Constant properties for roof substrate
- 4. Mass balance
- 5. Drainage layer performance data
- 6. Experimental data for winter conditions
 - 1. Snow melting
 - 2. Plant dormancy
- 7. Inter-comparison model performance for winter and summer

Gaps and Limitations Addressed at PennState

- 1. Experimental data for validation
- 2. Complete model validation
- 3. Constant properties for roof substrate
- 4. ~Mass balance

Penn State Center for Green Roof Research

Previous Work at PennState

Developed and validated a heat and mass transfer green roof model

- Designed and built a new apparatus "cold plate"
- Obtained dynamic and quasi-steady state data
- Verified and validated green roof model
 - Detailed laboratory experiments
 - o Surface temperature
 - Evapotranspiration
 - o Conduction
 - Net radiation...
 - Outdoor validation

"Cold Plate" Apparatus

- Inspired by ASTM C177 "hot plate" and C1363 "hot box"
- Requires an environmental chamber
- Measures simultaneously heat and mass transfer phenomena

"Cold Plate" Apparatus

Model Validation: Conduction

Outline

- 1. Introduction
- 2. Heat and Mass Transfer
- 3. Current Capabilities and Limitations
- 4. Inputs
- 5. Conclusions

Model Inputs

- LAI: 0-5 (typically 1–3)
- Stomatal resistance:
 - Succulent plants: 450-1000 s/m
 - Desert plants: 225–1125 s/m (Jones 1992)
 - Lab experiments for Sedums/Delosperma 500–700 s/m (Tabares-Velasco and Srebric 2011)
 - EnergyPlus limit is 300 s/m!!!
- Plant coverage 0%–100% (upper limit about 80%)
- Irrigation: extensive roofs typically not irrigated

Model Inputs (continued)

- Substrate thermal conductivity
 - ~0.2 W/mK (dry)
 - $\sim 0.4-0.6$ W/mK (wet)

- Bowen ratio: ~0.2
- Green roof R-value (under laboratory conditions): 4.3–4.8 ft²hF/Btu (but don't use it!)

Outline

- 1. Introduction
- 2. Heat and Mass Transfer
- 3. Current Capabilities and Limitations
- 4. Inputs
- 5. Conclusions

Conclusions

- Current green roof models are more sophisticated and complete than 10 years ago
- Accurate green roof modeling requires energy and mass balance
- All models should to be (fully) validated before implementation in building energy simulations software
- DON'T try this at HOME!
- Validated green roof model is coming soon!

Thank you!

Acknowledgments

- Dr. Jelena Srebric, Pennsylvania State University
- Dr. Robert Berghage, Pennsylvania State University
- Consejo Nacional de Ciencia y Tecnología (CONACYT)
- ASHRAE
- NSF (check it out!) www.nsf.gov/news/special_reports/greenre volution/index.jsp

